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Abstract—In the context of cloud computing, enterprises
are increasingly adopting multi-cloud strategies to enhance
performance, ensure cost efficiency, and avoid vendor lock-in.
This trend presents a significant challenge for the migration
of AI for IT operations (AIOps) models across different cloud
providers due to variations in architecture, performance, and
data distribution. Traditional methods of re-training AIOps
models for new cloud environments are labor-intensive and
delay deployment. To address this issue, we introduce a novel
framework called SAM (Subseries Augmentation-based Meta-
learning), which facilitates seamless model migration between
clouds without the need for re-training from scratch. SAM
leverages data augmentation and meta-learning to efficiently
adapt AIOps models to new cloud environments. It has proven
effective in adapting anomaly detectors across various config-
urations over both public and simulated datasets. We believe
that SAM can also be adapted to other AI models used for
automating IT tasks such as alerting and resource scaling.

Index Terms—multi-cloud migration, model generalization,
anomaly detection

I. INTRODUCTION

Multi-cloud computing is gaining importance in the IT
landscape and among businesses [?], [?]. From a business
perspective, it empowers organizations to avoid vendor lock-
in and provides the flexibility to choose from different
cloud providers. In spot markets, it facilitates the economical
migration of “bursty" applications. From a technical stand-
point, it ensures resiliency, availability, and flexibility. It can
safeguard against cloud provider outages, optimize capacity
via regional cloud providers, and enable the use of best-
of-breed services, which promotes productivity and offers
opportunities for various applications to utilize the cloud
platform that best matches their requirements.

When operating in cloud computing, AIOps models are
developed using IT operational data (e.g., metrics, logs,
traces) to automate and streamline operational workflows.
Such models can help reduce significantly the cognitive
load and enhance the productivity of Site Reliability En-
gineers (SREs) by exploiting extensive and diverse opera-
tional data [?]. For example, AIOps models can efficiently
detect anomalies, locate root causes, automatically resolve
problems, and manage cloud resources, all without requiring

manual operational intervention. The integration of data-
driven AIOps models plays a pivotal role in accelerating
and automating the resolution of complex IT issues, thereby
simplifying the management burden for SREs.

When migrating IT applications from a source cloud
to a target cloud, the observability data is susceptible to
experiencing distribution drifts. It can be caused by the
diverse compute, network, storage, software, and hardware
configurations across different cloud providers [?]. Thus,
directly applying the AIOps model learned from one cloud to
another would likely result in suboptimal performance (e.g.,
accuracy, false positive rate) due to the discrepancies in data
distributions. Though it is possible to re-train the model from
scratch using newly observed data from the target cloud,
this can be expensive as the data collection is usually time-
consuming and labor-intensive. The objective of the present
paper, therefore, is to develop strategies for seamlessly
migrating AIOps models to new cloud environments, by for-
mulating it as an out-of-distribution generalization problem
[?] and solving by leveraging machine learning techniques.
Since different IT operational data can be represented as or
converted to time-series, with similar format to metrics, we
focus on migrating models based on time-series metrics.

Towards this goal, in this paper we propose a Subseries
Augmentation-based Meta-learning (SAM) framework for
multi-cloud migration, aiming to learn generalized AIOps
models from a source cloud, which can be readily adapted
to target clouds with zero-shot learning. SAM consists of
two key steps: (i) data augmentation from subseries, which
partitions and clusters the time-series metrics collected from
source cloud into different groups with varying distributions,
and then augment data from each distribution to generate
diverse representations; and (ii) meta-learning domain gen-
eralization, which captures shared patterns across varying
distributions to learn a single model with generalization ca-
pability. The effectiveness of SAM was validated on a public
dataset and a simulated dataset, each exhibiting significant
distribution drifts across different configurations. The key
contributions of this paper can be summarized as follows:

1) A novel framework, SAM, was proposed to facilitate



the migration of AIOps models in multi-cloud en-
vironments. This framework can capture generalized
patterns across different distributions through the com-
bination of data augmentation and meta-learning.

2) The effectiveness of SAM was validated via extensive
experiments over both public and simulated datasets.
SAM significantly outperformed direct model migra-
tion across different distributions and achieved compa-
rable performance to scenarios in which the model was
retrained with sufficient data collected from the target
cloud. It indicates SAM’s capability to maintain decent
performance while avoiding the costs associated with
data collection and the delays in deployment.

3) The effectiveness of SAM in migrating state-of-the-art
anomaly detectors was evaluated. Our results indicate
that SAM can successfully adapt anomaly detectors
across various experimental settings without the need
for re-training. We argue that SAM can be applied to a
broader class of AIOps models used for managing IT
tasks such as root cause analysis and resource scaling.

II. PROBLEM STATEMENT

A. Drifts in Multi-Cloud Computing Environment

In multi-cloud computing, various cloud providers offer
diverse compute, network, storage, software, and hardware
configurations, which often leads to altered behaviors when
serving the same application. Figure 1 illustrates the average
90th percentile latency in seconds for five services of a
containerized application deployed on two systems with
different configurations. System A is equipped with 12
VCPUs and 48 GiB of memory, while System B has 24
VCPUs and 96 GiB of memory. As expected, the latency
decreases for most of the services on System B due to its
greater resources, while this is not the case for all services.
The distribution of latency for each service also varies. For
example, Service A exhibits a much larger standard deviation
in latency on System A compared to System B.

Another example of behavioral changes due to differences
in configurations is depicted in Figure 2. A larger system is
configured with 24 VCPUs and 94 GiB of memory, while a
smaller system has 24 VCPUs but only 46 GiB of memory.
We observe that the smaller system’s Requests Per Second
(RPS) in Configuration 1 is comparable to that of the larger
system but in Configuration 2 the smaller system’s RPS
drops significantly in contrast to the larger system.

The variations in configurations lead to distribution drifts
in the gathered observability data during the migration of
applications and associated AIOps models from a source
cloud to target clouds. A model that performs well on the
source cloud may not necessarily perform as effectively
on the target cloud due to differing distributions. Although
the model can be re-trained using newly collected data
from the target cloud, data availability remains a significant
obstacle, as the process of collecting and labeling sufficient
data is inherently time-consuming and can lead to delays
in model re-learning. Additionally, there is often a strong

Fig. 1: 90th percentile latency of services for two systems.

Fig. 2: RPS for two systems under different configurations

preference for having a model readily applicable before
any observations become available from the target cloud,
which poses further challenges for seamless and efficient
deployment of AIOps solutions in multi-cloud environments.

B. Out-of-distribution Generalization

Addressing the drift in AIOps models in multi-cloud com-
puting can be modeled as a problem of out-of-distribution
generalization. Recently, there has been a growing body of
research motivated by the need to deal with the susceptibility
of machine learning models to data distribution shifts [?]. It
can generally be addressed by enhancing data generalization
[?], [?], [?], model generalization [?], [?], or both [?], [?].

1) Data Generalization: Data augmentation techniques
can enhance generalization by generating populations with
more diverse patterns in a more cost-effective manner com-
pared to traditional data collection, which is especially bene-
ficial when access to the data of unknown target distributions
is limited [?]. The recent advancement in data augmentation
has enabled the generation of synthetic data that closely
resembles real operational environments. This capability has
become a key driver behind the generalization capability of
industrial AI solutions to real-world scenarios [?]. Despite
the enriched data after augmentation, directly taking mixed



distributions as input for a single model might still have a
limited capability in fully capturing their shared patterns. To
handle this issue, model generalization can be employed.

2) Model Generalization: To bolster the model’s capacity
to tolerate unseen distributions, we aim to facilitate model
generalization through meta-learning, which is also known
as “learning to learn." By training the model with diverse
learning tasks, meta-learning enables it to swiftly adapt to
new tasks with limited observations [?]. To address the
distribution drifts, we model each distribution in the training
data as an individual learning task. Our primary goal is
to derive a model that exemplifies robust generalization
capabilities through adept adaptation to new tasks character-
ized by various distributions. In the context of multi-cloud
computing, where the target cloud lacks prior information on
its data distribution, we expect the model to adapt through
zero-shot observations from the target cloud. To tackle this
challenge, we employed a Meta-Learning Domain Gener-
alization (MLDG) [?] technique in SAM. Instead of using
a specific model tailored for generalization, MLDG serves
as a model-agnostic algorithm that enhances the robustness
of various AIOps models (e.g., supervised, unsupervised,
reinforcement learning). By capturing shared patterns across
different distributions, MLDG can filter out the impact of
infrastructure and software over the application performance,
allowing us to learn various generalized models and transfer
them across different configurations. However, meta-learning
can only effectively capture distribution drifts and achieve a
more robust model if the input data admits a certain level
of generalization. To address this issue, incorporating data
generalization becomes essential.

3) Data & Model Generalization: Based on the above
analysis, it is evident that relying solely on either data or
model generalization is insufficient. Therefore, the objective
of this work is to leverage the strengths of both approaches
by effectively combining them. While there have been some
prior works that proposed similar goals [?], [?], they are
designed for specific tasks, e.g., only for unsupervised tasks,
and may not generalize well for different models. To over-
come this issue, in this paper, we harness the capabilities
of both data augmentation and meta-learning in SAM to
achieve data and model generalization simultaneously, aim-
ing to obtain a model-agnostic framework with the potential
to be readily applicable on a wide range of tasks.

III. METHODOLOGY

In this paper, we propose a Subseries Augmentation-based
Meta-learning (SAM) framework, as illustrated in Fig. 3.
The framework consists of two key steps: (i) Augmentation
from subseries, which involves partitioning time-series data
into subseries clusters with different distributions and then
augmenting data from each distribution; and (ii) Meta-
learning for domain generalization, which captures shared
patterns across different distributions to achieve model gen-
eralization. These two steps will be detailed in what follows.

Algorithm 1 Augmentation from Subseries

1: Input: Time-series X = {xt|t ∈ [1, T ]}
2: Initial: Cluster number k
3: Employ GMM to learn {(µk, σk)|k ∈ [1,K]}
4: for each cluster k ∈ K do
5: Get subseries {x̄k} belonging to k
6: Initialize an empty time-series X̃k = {}
7: while X̃k has fewer timestamps than X do
8: Randomly sample a subseries {x̄k

p} from {x̄k}
9: Randomly replace timestamps in {x̄k

p} to be the
10: data sampled from (µk, σk) and get {x̃k

p}
11: Concatenate {x̃k

p} to the end of X̃k

12: end while
13: end for
14: Output: The augmented time-series {X̃k, k ∈ [1,K]}

A. Augmentation from Subseries

Given a time-series, its observations are denoted as X =
{xt|t ∈ [1, T ]}, with xt ∈ Rm being the t-th multivariate
observation with m features (metrics). Our motivation is to
simultaneously partition and cluster the time-series into sub-
series clusters, by learning a mapping from each observation
xt to a certain cluster {k|k ∈ [1,K]}.

Gaussian mixture model (GMM) can be employed to learn
such mapping in an unsupervised manner [?]. The GMM
decomposes all observations optimally into K Gaussians,
with the k-th fitted distribution corresponding to the k-
th cluster. Each cluster can then be characterized by its
mean and standard deviation (std). For all K distributions,
determining the optimal mean vectors {µk} is equivalent
to matching each observation to a cluster, and determining
the optimal {σk} is to estimate K stds for measuring how
dispersed the observations are in relation to cluster centers.

Given the subseries clusters learned from GMM, we then
conducted cluster-wise data augmentation. For a certain
cluster k, we first gathered all subseries {x̄k} belonging
to it. An empty augmented time-series was initialized as
X̃k = {}, which we would augment iteratively. Specifi-
cally, while X̃k had fewer timestamps compared to X, the
following steps were conducted repeatedly: (i) A subseries
{x̄k

p} was randomly sampled from {x̄k}; (ii) Randomly
selected timestamps in {x̄k

p} were replaced with the data
sampled from (µk, σk), converting it to {x̃k

p}; (iii) {x̃k
p}

was concatenated to the end of X̃k, with an interpolated
timestamp to ensure smoothness. Consequently, for each
cluster k, we obtained an augmented time-series X̃k, from
a specific distribution with diverse potential patterns.

B. Meta-learning for Generalized Model

In the context of meta-learning, we consider each aug-
mented time-series with a specific distribution as a “domain".
Our goal is to develop domain-agnostic models from training
domains S (i.e., {X̃k} with different distributions in our
case), which can be readily generalized to unseen domains. It



Fig. 3: Illustration of the SAM Framework.

can be modeled as a Meta-Learning Domain Generalization
(MLDG) problem [?].

Algorithm 2 Meta-learning for Domain Generalization

1: Input: Source domains {S} and initialized Θ
2: for ite in iterations do
3: Splitting S for meta-train and meta-test
4: Meta-train: updating Θ to Θ′

5: Meta-test: calculating loss over meta-test by Θ′

6: Meta-optimization: Updating Θ via combined loss
from both meta-train and meta-test

7: end for
8: Output: A generalized model readily migrating to T

Given a set of source domains {S} and a target domain T
(for pursuing a common task, e.g., anomaly detection, while
supplied with different statistics), MLDG aims to learn a
single model parameterized with Θ from {S}, which can be
generalized to T with zero-shot observation. It consists of
four iterative steps: domain splitting, meta-train, meta-test,
and meta-optimization.

In domain splitting, the source domains {S} are divided
into two sets (i.e.,, {Str} and {Ste}) for meta-train and
meta-test, respectively. In meta-train, based on {Str},
the gradient ∇Θ = f ′

Θ({Str}; Θ) is calculated and Θ is
updated with a one-step gradient: Θ′ = Θ−α∇Θ, where α
indicates the step size. Then in meta-test, given the updated
model parameters Θ′, the loss over {Ste} is calculated, i.e.,
g({Ste}; Θ′). Finally, in meta-optimization, Θ is optimized
with a combined loss from both meta-train and meta-test:

Θ = Θ− γ
∂(f({Str}; Θ) + βg({Ste}; Θ− α∇Θ))

∂Θ
(1)

The above four steps will be conducted iteratively until
convergence, e.g., reaching a pre-defined iteration number.
Through meta-learning, the model gains the generalization
capability across different domains, enabling it to be effec-
tively migrated to an unseen domain.

IV. EXPERIMENTS

A. Public Dataset
1) Data Description: To validate the efficacy of our

proposed framework, SAM, we applied it to a pub-

lic Server Machine Dataset (SMD) [?]. SMD1 is col-
lected from a large Internet company over five weeks,
containing the metrics data of 28 server machines
from three groups, with each machine being named as
machine-<group_index>-<index>. There were 38
metrics collected over time, including CPU load, network
usage, memory usage, etc. The SMD has been extensively
employed to evaluate anomaly detection performance in
prior works [?], [?], [?]. Recently, Tuli et al. indicated that
anomaly detection for some of the machines in SMD are
trivial [?], i.e., the anomalies can be easily captured by naive
methods [?]. Following their suggestions, in this paper, we
included only those machines in SMD for which detecting
anomaly was non-trivial using simple heuristics, specifically
the data from machine-1-1, 2-1, 3-2, and 3-7, denoted
as m1, m2, m3, and m4, respectively.

Table I depicts the detailed data size and anomalies for
each selected machine. The data from each machine was
divided into two subsets with roughly equal size, with the
first half for training and the second half for testing. The
training set is entirely normal, while the testing set contains
both normal and abnormal data. The anomalies were tagged
by domain experts referring to incident reports. The average
anomaly rate among the four machines is around 2.56%. The
last column in Table I indicates the timestamp where the first
anomaly occurs in testing data, which can be early (e.g., 135
for m3). Thus, it would be difficult to obtain sufficient data
for re-training the model to capture the anomalies in time.

To verify the distribution drifts in this data, we employed
Maximum Mean Discrepancy (MMD) [?] with a Gaussian
RBF kernel to measure the distance between training and
testing sets across pairs of machines. To make the permuta-
tion test more efficient, the metrics were first projected to 5-
dim by PCA, and p-value used for measuring the significance
of the permutation test is 0.05. The MMD results indicate
that all training and testing pairs have distribution drifts, even
for data from the same machine, where the distribution can
be varying over time. In addition, for each of the 38 metrics,
we conducted Kolmogorov-Smirnov (KS) tests [?] between
training and testing sets across pair-wise machines, with
the p-value being 0.05. Table II summarizes the percentage

1https://github.com/NetManAIOps/OmniAnomaly



TABLE I: Data size and anormalies in SMD.

Machine Train
Size

Test
Size

Anomaly
(%)

First
Anomaly

machine-1-1 (m1) 28,479 28,479 4.73 15,849
machine-2-1 (m2) 23,693 23,694 2.47 6,506
machine-3-2 (m3) 23,702 23,703 2.34 135
machine-3-7 (m4) 28,705 28,705 0.76 10,609

TABLE II: Percentage of metrics with drifts in SMD.

Training Set Testing Set

m1 m2 m3 m4

m1 0.763 0.816 0.789 0.816
m2 0.816 0.684 0.763 0.763
m3 0.789 0.816 0.632 0.816
m4 0.816 0.737 0.737 0.684

among all metrics with significant drifts. From each row, we
found the training and testing data from the same machine
generally have the least percentage of metrics with drifts.

2) Experimental Settings: Based on SMD, we designed
extensive experiments to evaluate the SAM framework when
migrating anomaly detection models across different server
machines. The experimental settings are detailed as follows.
• Baselines: Given the four server machines in SMD, we

consider two different scenarios – when a model has been
trained from a certain machine, applying it to test data either
1) Within the same machine; or 2) Across different machines.

For the scenario Within the same machine (e.g., training
and testing data are both collected from m1), since the
testing set was collected posterior to training set and subtle
changes might have happened along the way, there could
be some drifts happening, as indicated in the MMD test.
However, there would still be some patterns in the testing
data shared with the training data, considering the temporal
property of time-series. For example, the latter part of
the training data would be highly informative for judging
whether the earlier part in the testing data is normal or not.
Hence, we treated this scenario as a benchmark (denoted as
Within) and expected that migrating the model to another
machine could in the best case achieve comparable perfor-
mance with it. Such Within benchmark would be generated
for each machine, thus we have 4 settings in this scenario.

For the scenario Across different machines (e.g., training
over m1 while testing over m2/m3/m4), as indicated by KS
tests in Table II, there would be greater drifts compared
to Within, thus it would be more challenging to achieve
satisfactory model performance. Taking each machine as
a target to be migrated to, we treated each of the other
three machines as well as their combination as the training
data, respectively. For example, when testing over m1, we
separately trained the model over m2, m3, m4, together with
the concatenated m2,3,4. Therefore, there are 16 different
train-test settings. We then compared two ways of migrating
the models Across different machines, each with these 16
settings: 1) Direct migration of the model learned from the
training data; and 2) Employing SAM for subseries cluster

Fig. 4: PA vs. PA%K

learning to capture different distributions, augmenting the
data per distribution, treating each distribution as a domain
input for the meta-learning domain generalization, and then
migrating the generalized model to the target machine.

To sum up, there were in total 36 settings, with 4 for the
Within scenario, and 16 for the Direct and SAM, respectively.
• Evaluation: Existing anomaly detection approaches gen-

erally employ F1 score for evaluation [?], [?], [?]. F1 is
calculated as a harmonic mean between precision and recall,
where precision quantifies what proportion of data identified
to be anomalies are actually abnormal, and recall indicates
what proportion of truly abnormal data can be correctly
found. In time-series data, it is common that the anomalies
will be lasting over a period of time [?]. As a result, prior
works usually measure F1 after applying a Point Adjustment
(PA) protocol [?]. PA is illustrated in Fig. 4(a) – If at least
one point in a contiguous anomaly region is detected, then
the entire region is considered to be accurately detected, and
the prediction over the region will be adjusted accordingly.

Recently, Kim et al. demonstrated PA has a high potential
to overestimate the model performance [?]. Specifically, it
can simultaneously increase true positive and decrease false
negative, while maintaining false positive. Hence, precision,
recall, and consequently F1 score will always increase after
PA. Taking Fig. 4(a) as an example – If the anomaly scores
were randomly generated, and there was one point within
the anomaly region that happened to be detected “correctly",
then the whole region would be adjusted to be true positive,
and such random guess would also get decent evaluation
results. To address this issue, [?] suggested using F1 with a



PA%K protocol (F1_PA%K) instead. As shown in Fig. 4(b),
only when the ratio of correctly detected anomalies within
the anomaly region exceeds a certain threshold of K%, the
PA will be carried out. Within the right-side of the anomaly
region, since there are merely two points detected, the labels
will not be adjusted. Herein, we set K as 20 by default.

In addition to the F1_PA%K, we also employed AUC and
Range-AUC for evaluation. AUC measures the area under
ROC curve, which is a plot for true positive vs. false positive
at different detection thresholds. Higher AUC indicates more
accurate model, with higher true positive rate and lower
false positive rate. The range-AUC is adapted from AUC [?],
considering the regional property of anomalies. When calcu-
lating precision and recall for an anomaly region, it considers
(i) existence: whether there exist detected anomalies in the
region; (ii) size: a larger size of correctly predicted portion
of anomalies within the region is preferred; (iii) position:
the relative position for the correctly predicted anomalies is
usually the earlier the better; and (iv) cardinality: detecting
the anomalies as a single prediction range can be more
valuable compared to multiple fragmented ranges.
• Anomaly Detectors: Though we mainly focus on migrat-

ing anomaly detectors for multi-cloud, note that SAM can
be readily adapted to other AIOps models. The anomaly
detection is one of the fundamental IT tasks, with new
approaches continuously being proposed (e.g., GPT4TS
[?], TimesNet [?], FEDformer [?], Autoformer [?], Trans-
former [?], DLinear [?], PatchTST [?], MICN [?]) in past
years. Different approaches were compared in a recently
built Time Series Library2, where it is suggested that the
Top-3 approaches are TimesNet, FEDformer, and Auto-
former [?]. However, it is not clear whether some state-of-
the-art methods were included in this ranking, and it was
based on precision, recall, and F1 score with PA.

Utilizing the more rigorous evaluation measurements (i.e.,
F1_PA%K, AUC, and Range-AUC), we compared all the
above mentioned state-of-the-art methods together with a
Random baseline (LSTM with random parameters [?]) under
36 settings (discussed in the earlier section) with SMD
data. Fig. 5 shows box plots for the rankings among these
methods. The smaller the ranking, the better the performance
of the method is. We can clearly see that TimesNet is
undoubtedly the Top-1, which agrees with the finding from
the Time Series Library. It is the only method without
any overlapping interquartile range (IQR) compared to the
Random. According to the median of rankings, the other
two approaches in the Top-3 are PatchTST and GPT4TS.
Therefore, in this paper, we mainly focus on migrating
TimesNet, as well as PatchTST and GPT4TS.

• Parameter Settings: To determine the optimal number
of subseries clusters in GMM, we employed the Bayesian
information criterion (BIC) [?], which aims at maximizing
the likelihood of observing the data, subject to a penalty term
to avoid complex models with a larger number of clusters to
control the overfitting. Across different server machines, we

2https://github.com/thuml/Time-Series-Library?tab=readme-ov-file

Fig. 5: Ranking of the AD methods (The smaller the better).

found BIC usually converged with 4-6 clusters. Therefore,
we set the cluster number default as 5 in all experimental set-
tings. In meta-learning domain generalization, we followed
the default settings described in [?], with the size of one-
step update, i.e., α, being 5e-1, the factor for balancing the
meta-train loss and meta-test loss, i.e., β being 1, and the
learning rate γ being 1e-4. Other parameters involved in
anomaly detection followed the default settings in the Time
Series Library [?]. We utilized a Nvidia Tesla P100 with
16GB GPU memory. The training took less than 5 minutes
of processing and less than 10 seconds for testing.

3) Results: Table III and Fig. 6 show the results over the
SMD data. Table III focuses on the Top-1 anomaly detector
(i.e., TimesNet) while Fig. 6 covers more comprehensive
comparisons for all Top-3 (i.e., TimesNet, PatchTST, and
GPT4TS). For each method, there were 36 settings (with
different training and testing data) compared. Regarding the
two migration manners in the scenario of Across different
machines (i.e., Direct and SAM), we calculated the mean(std)
for each evaluation measurement learned based on the four
training data (i.e., training by the other three machines
respectively and their concatenation), which is shown in
bottom row of Direct and SAM cells in each sub-table of
Table III. In Fig. 6, the bar charts for the mean(std) of Direct
and SAM are compared to the Within.

Note that in real-world scenarios the target data (i.e.,
where the model is migrating to) can be fully unobservable,
and hence, Across would be a more realistic while challeng-
ing task compared to Within. When evaluating the results,
we took Within as the benchmark, expecting that our SAM
(learned from data more likely to face drifts than Within)
performs comparable to Within, while better than Direct.
• SAM vs. Direct: From Table III, we can see in the

majority of settings that SAM outperformed Direct. Among
the four sub-tables, the average F1_PA%K, AUC, and
Range_AUC for Direct are 0.459, 0.717, and 0.743, respec-
tively, while SAM achieves 0.580, 0.791, and 0.808, with
clear improvements of 0.121, 0.074, and 0.065 compared to
Direct. Another observation is that SAM has much smaller
std compared to Direct. For Direct, the average std across
the four sub-tables for F1_PA%K, AUC, and Range_AUC
are 0.068, 0.075, and 0.077, respectively, while SAM has
the average std of 0.008, 0.011, and 0.011, which indicates
a significantly more stable performance compared to Direct.

Among the 16 settings in Across (i.e., taking each machine
for testing, while every other machine and their combi-
nation for training), there are 14 out of the 16 settings



TABLE III: Results over SMD (with Top-1 anomaly detector, i.e., TimesNet). The best performing model is highlighted
in bold face under the Across configuration.

(a) Testing over m1

Method Training F1_PA%K AUC Range_AUC

Within m1 0.852 0.956 0.943

A
cr

os
s

Direct

m2 0.649 0.854 0.879
m3 0.635 0.823 0.843
m4 0.782 0.888 0.919

m2,3,4 0.616 0.796 0.794

mean(std) 0.670(.065) 0.840(.034) 0.859(.046)

SAM

m2 0.852 0.943 0.938
m3 0.833 0.943 0.940
m4 0.850 0.948 0.940

m2,3,4 0.843 0.942 0.937

mean(std) 0.844(.007) 0.944(.002) 0.939(.001)

(b) Testing over m2

Method Training F1_PA%K AUC Range_AUC

Within m2 0.427 0.745 0.805

A
cr

os
s

Direct

m1 0.213 0.495 0.536
m3 0.365 0.723 0.783
m4 0.391 0.708 0.768

m1,3,4 0.378 0.723 0.788

mean(std) 0.337(.072) 0.662(.097) 0.719(.106)

SAM

m1 0.419 0.743 0.804
m3 0.419 0.727 0.787
m4 0.423 0.751 0.814

m1,3,4 0.429 0.735 0.796

mean(std) 0.422(.004) 0.739(.009) 0.800(.010)

(c) Testing over m3

Method Training F1_PA%K AUC Range_AUC

Within m3 0.249 0.562 0.543

A
cr

os
s

Direct

m1 0.304 0.578 0.582
m2 0.217 0.497 0.493
m4 0.398 0.705 0.704

m1,2,4 0.253 0.563 0.566

mean(std) 0.293(.068) 0.586(.075) 0.586(.076)

SAM

m1 0.260 0.566 0.550
m2 0.263 0.571 0.552
m4 0.259 0.561 0.549

m1,2,4 0.279 0.621 0.602

mean(std) 0.265(.008) 0.580(0.024) 0.563(.022)

(d) Testing over m4

Method Training F1_PA%K AUC Range_AUC

Within m4 0.791 0.920 0.943

A
cr

os
s

Direct

m1 0.358 0.616 0.676
m2 0.579 0.826 0.842
m3 0.578 0.842 0.869

m1,2,3 0.622 0.836 0.855

mean(std) 0.534(.065) 0.780(.095) 0.810(.078)

SAM

m1 0.790 0.900 0.932
m2 0.776 0.915 0.945
m3 0.807 0.895 0.927

m1,2,3 0.776 0.889 0.917

mean(std) 0.787(.013) 0.900(.010) 0.930(.010)

that SAM outperformed Across for F1_PA%K, AUC, and
Range_AUC, respectively. The only two exceptions happen
when migrating the model from m1 to m3 and from m4

to m3. Comparing across the four sub-tables, in general
the performance when taking m3 for testing (i.e., results
in Table III(c)) is worse. Even when considering the Within
scenario (i.e., the training data is also collected from m3),
the performance is not good, with the F1_PA%K, AUC, and
Range_AUC being 0.249, 0.562, and 0.543, respectively. It
indicates that there might be some drastic drifts occurring
in the testing data of m3, with some patterns that happen
to be captured by m1 and m4. However, when taking m2

for training in Direct, the luck is not repeated and the
performance turns out to be much worse. Furthermore, Table
III(c) indicates that SAM using the training data of m1,2,4

outperforms m1, m2, and m4. Hence, broader sources of
training data is helpful to cover more diverse distributions,
from which SAM can learn more generalized patterns.

Similar findings can be drawn from Fig. 6, considering the
Top-3 anomaly detectors. Again, SAM in general performs
better compared to Direct, especially with higher mean
values when taking m1 and m4 for testing across the three
models. The exceptions happen when taking m3 for testing.
However, in all these exceptions, the differences between
the mean value of Direct and SAM are negligible; while
the Direct has much larger std compared to SAM. In real-

world cases, where it is not always possible to acquire data
with a similar distribution to the unobservable target before
migration, a more stable model with decent performance,
such as SAM, would be preferred.
• SAM vs. Within: SAM is expected to achieve comparable

performance to Within, in which both the training and testing
data are collected from an identical machine. Due to the
homology between training and testing data, Within may
have already observed some disclosed distribution patterns
from the testing data beforehand. In SAM, the target dis-
tribution is fully unobservable, and there is no guarantee
that the available data has any similar patterns to the test
data. So when taking Within as the benchmark, it will be
particularly impressive if SAM can obtain similar or even
better performance compared to Within.

According to Table III, SAM generally has similar results
to Within. Among four sub-tables, the average F1_PA%K,
AUC, and Range_AUC for Within are 0.580, 0.796, and
0.809, respectively, while SAM achieves 0.580, 0.791, and
0.808, with the differences being merely 0.000, 0.005, and
0.001 compared to Within. Besides, SAM’s low std indicates
stable performance across different scenarios. In a few
scenarios when the testing data may have significant drifts,
like when testing over m3 as we discussed in a prior section,
SAM can even get slightly better performance compared to
Within by capturing more generalized patterns among the



Fig. 6: Results over SMD (with Top-3 anomaly detectors, i.e., TimesNet, PatchTST, and GPT4TS).

different distributions from the training data. From Fig. 6, we
get similar findings. It can be readily seen in the figure that
in the majority of cases SAM has similar heights to Within
(with small stds) across different evaluation measurements
under varying settings for all three anomaly detectors.

B. Our Dataset

1) Data Description: We further validated SAM over our
own generated dataset that mimics real-world application
migration from a source system to a target system with
significant differences in the system specification. Herein,
we used a modified version of Instana’s Robot Shop ap-
plication [?] deployed on two Kubernetes systems. This
application simulates the process of buying a robot from
an online store, which involves 13 services and multiple
dependencies between them. Each Kubernetes cluster system
ran on virtual machines from IBM Cloud. The first system
(i.e., s1) was configured with five machines with 8 vCPUs,
32 GB of memory, and 600 GB of storage; The second one
(i.e., s2) was configured with ten machines with 8 vCPUs, 8
GB of memory, and 600 GB of storage. For each system, a
single control node is used and all nodes are configured as
worker nodes. To ensure the scalability, KEDA autoscaler
was used to decide the number of pods created for each
service. Instana agents were deployed over both systems to
monitor the application and collect the metric data.

We ran the application for both systems for 24 hours
while changing the workload (i.e., changing request arrival
distribution) on the application and collected the metric data

TABLE IV: Data size and anormalies in our dataset.

System Train
Size

Test
Size

Anomaly
(%)

First
Anomaly

system-1 (s1) 1,200 1,200 17.67 371
system-2 (s2) 1,200 1,200 17.58 365

TABLE V: Percentage of metrics with drifts in our dataset.

Training Set Testing Set

s1 s2

s1 0.196 0.536
s2 0.714 0.589

through Instana agents. For the second 12 hours, we injected
periodic faults in 30 minutes intervals for a service which
mimics HTTP 500 server not available error codes [?]. We
considered 4 metrics of calls per second, erroneous calls per
second, average occurrence of errors, and end to end latency
for each of the 13 services. Thus, we have 52 metrics in total.
The anomaly detectors can be trained over these metrics to
understand when the application is not running efficiently.
In our dataset, we have access to the ground truth labels
for start and end of anomalies through the fault injection
logs. The data size for the two systems, as well as their
respective anomaly rate and the timestamp when the first
anomaly occurs in testing data are detailed in Table IV.

2) Experimental Settings: We designed various experi-
mental settings to evaluate SAM when migrating anomaly



detection models across systems detailed as follows.
• Baselines: Given the two systems in our dataset, we

consider two different scenarios, i.e., after training a model
from one system, applying it to test either 1) Within the same
system; or 2) Across different systems.

For the scenario Within the same system, when conducting
MMD tests, we found both s1 and s2 do not have significant
drifts between their training and testing data. Thus, Within is
expected to perform well by knowing more prior knowledge
about the test distribution, and we took it as a benchmark
and expected SAM to achieve comparable performance. We
generated benchmark from Within for each of the 2 systems.

For the scenario Across different systems, as indicated by
KS tests shown in Table V, the drifts are greater compared to
Within (higher percentage of metrics have significant drifts
when training and testing sets are different). Thus, it would
be more challenging to achieve decent model performance
in Across. Taking each system as a target to be migrated to,
we treated the other system as the training data. Therefore,
we have two different train-test settings, i.e, from s1 to s2
and from s2 to s1. We then compared two ways, i.e., Direct
migration of the model or employing SAM to learn more
generalized model for migration, across different systems.
To sum up, there were in total 6 settings, with 2 for the
Within, and 2 for the Direct and SAM, respectively.

• Evaluation & Anomaly Detectors: Based on our analysis
over SMD in Section IV-A2, herein, we utilized the same
measurements of F1_PA%K, AUC, and Range-AUC for
evaluating the performance of the selected Top-3 anomaly
detectors, i.e., TimesNet, PatchTST, and GPT4TS.

• Parameters Settings: Both systems have converged BIC
with 4-6 cluster, thus we set the GMM cluster number as
5 in all experimental settings. The size of one-step update,
(i.e., α), the harmonic coefficient between meta-train and
meta-test losses, (i.e., β), and the learning rate (i.e., γ) were
set by default as 5e-1 and 1, respectively. The parameters in
anomaly detectors are the same as [?]. A Nvidia Tesla P100
with 16GB GPU memory was employed in our experiments.
The training is done <2 minutes and testing <5 seconds.

3) Results: Similar to SMD, in Table VI, we focused on
the Top-1 anomaly detector (i.e., TimesNet), and in Fig. 7,
more comprehensive comparisons were carried out for all
Top-3 (i.e., TimesNet, PatchTST, and GPT4TS). For each
method, there were 6 settings (with different data for training
and testing) compared. Moreover, we took Within as the
benchmark, and the expectation is for SAM performance to
be comparable to Within and better than Direct.

• SAM vs. Direct: Table VI shows that in all settings, SAM
outperformed Direct. Among the two sub-tables, average
F1_PA%K, AUC, and Range_AUC for Direct are 0.620,
0.511, and 0.732, respectively, while SAM achieves 0.624,
0.607, and 0.818, with comparable F1_PA%, and the im-
provements for AUC and Range_AUC are 0.096 and 0.086.

Similar findings can be learned from Fig. 7. In general,
SAM performs better than Direct. The average F1_PA%K,
AUC, and Range_AUC for Direct under different settings for
all three methods are 0.623, 0.510, and 0.724, respectively.

Fig. 7: Results over our dataset (with Top-3 anomaly
detectors, i.e., TimesNet, PatchTST, and GPT4TS).

SAM achieves 0.628, 0.586, and 0.813, with comparable
F1_PA%K while AUC and Range_AUC improved by 0.076
and 0.089. Though there are few exception (i.e., F1_PA%K
when testing over s1 for TimesNet and PatchTST, and AUC
when testing over s1 for PatchTST), SAM and Direct are
quite close in these cases, with the differences in these
exceptions being merely 0.004, 0.015, and 0.016. In general,
SAM performs better than Direct in most of the settings.
• SAM vs. Within: Our expectation is that SAM achieves

comparable performance to Within. According to Table VI,
SAM generally performs similarly to Within. In particular,
the average improvements of SAM over Direct for AUC and
Range_AU, i.e., 0.076 and 0.089, are higher than its gaps to
Within, i.e., 0.051 and 0.039. As indicated by MMD tests,
the training and testing data from both s1 and s2 do not have
significant distribution drifts. It means more information
regarding the testing distributions is disclosed beforehand
in the training data for Within, making its performance even
harder to surpass. Taking all these into consideration, SAM’s
comparable performance relative to Within is very promising
and on par with our expectations.

V. RELATED WORK

A. Time-series Augmentation

Machine learning models, especially deep learning mod-
els, usually rely on large amounts of data to achieve good
performance. However, the data collection is usually expen-
sive, consuming lots of time, labor, and resources. Addition-
ally, in real-world applications, the data access is commonly



TABLE VI: Results over our dataset (with Top-1 anomaly detector, i.e., TimesNet). The best performing model is
highlighted in bold face under the Across configuration.

(a) Testing over s1

Method Training F1_PA%K AUC Range_AUC

Within s1 0.629 0.620 0.854

A
cr

os
s Direct s2 0.622 0.524 0.768

SAM s2 0.626 0.600 0.829

(b) Testing over s2

Method Training F1_PA%K AUC Range_AUC

Within s2 0.677 0.696 0.860

A
cr

os
s Direct s1 0.618 0.498 0.697

SAM s1 0.622 0.613 0.807

restricted and it is often not feasible to acquire sufficient
data for model training purpose. To alleviate this issue, data
augmentation techniques have been developed [?].

Recently, some data augmentation approaches specifically
for time-series data have been proposed, for improving the
performance in time-series classification [?], [?], forecast-
ing [?], [?], and anomaly detection [?], [?]. In [?], the
augmentation was conducted for anomaly detection with the
purpose of generating more labeled data and handling the
data scarcity and imbalance issue [?]. It is different from
our work as their augmentation was mainly for anomalies,
by modeling the anomaly detection as a supervised classifi-
cation problem. Since in real-world scenarios, it is usually
expensive to tag anomalies, in our work, we consider a more
general case using semi-supervised learning for detection,
not requiring any labeled anomalies, and augment the time-
series from normal data instead. In another work [?], time-
series augmentation was conducted for normal data, using
the methods including zooming, adding random trend, re-
versing series, applying a random linear operation, random
mutation between multiple series, etc. Though it can boost
the size of time-series, it does not capture the varying distri-
butions from the data, which is critical for the downstream
meta-learning generalization task in our case.

B. Meta-learning

Meta-learning introduces a paradigm wherein a machine
learning model accumulates experience across multiple
learning episodes, encompassing a distribution of related
tasks. It leverages experience to bolster the future learning
performance [?]. This “learning-to-learn" concept offers a
host of advantages, including enhanced data and compute
efficiency, while also bearing similarity to learning strategies
observed in human and animal learning where improvements
occur over both lifetime and evolutionary timescales. Unlike
conventional AI approaches, where tasks are tackled from
scratch using a fixed learning algorithm, meta-learning fo-
cuses on enhancing the learning algorithm itself through the
insights gained from multiple learning episodes.

Both domain generalization and domain adaptation ap-
proaches address situations where the source and target
problems share the same objective, while the data distri-
bution of the target task differs from that of the source
task [?]. For instance, works like [?], [?] adopt domain
adaptation methods to achieve a shared representation across
different domains. This can be formulated as a k-shot
learning problem, involving k-shot observations from the

target cloud. However, this approach requires data collection
before model training, leading to delays in model readiness.
Additionally, it usually involves pair-wise adaptation, neces-
sitating retraining of the model when adapting to another
target cloud. An alternative method is domain generalization
[?], which focuses on training a robust model using the
source domain while assuming the unavailability of the
target domain during the training process. This can be seen
as a zero-shot learning problem.

To improve the model generalization, meta-learning meth-
ods has been utilized to perform both domain generalization
and adaptation [?]. Combined with domain adaptation, Finn
et al. proposed a model-agnostic meta-learning [?] for fast
adaptation of deep networks. It takes meta-learning for few-
shot learning by training a single model on a set of source
tasks that is only a few gradient descent steps away from a
good task-specific model. More recently, Li et al. proposed
a meta-learning domain generalization (MLDG) [?], which
is a model-agnostic approach for zero-shot case that is
robust to domain shift. The power of MLDG not only lies
in being domain-agnostic, but also being model-agnostic,
which can be generalized to different tasks, feasible for
supervised/unsupervised learning as well as reinforcement
learning. Though some time-series foundation models have
been proposed recently for zero-shot learning [?], they are
mainly designed for forecasting or anomaly detection tasks,
not being model-agnostic. Our experiments also demon-
strated that our SAM framework with MLDG can further
improve the performance of such models, e.g., GPT4TS.

VI. CONCLUSIONS

In this paper, we present a novel SAM framework for
handling the challenge in multi-cloud migration for AIOps
models across different cloud providers. To achieve this goal,
SAM integrates both data generalization through augmenta-
tion from subseries clusters and model generalization using
meta-learning techniques. Through the synergy of data and
model generalization, we foster the development of more
robust AIOps models capable of seamless migration to the
target cloud, avoiding the re-training of the models which
usually relies on expensive data collection. The effectiveness
of SAM was validated through extensive experiments on
both public and simulated datasets. The decent and stable
performance over different anomaly detectors shed some
light on the potential for adapting SAM to other AIOps
models that are used to automate IT tasks (e.g., alerting and
resource scaling).
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