
Localizing and Explaining Faults in Microservices
Using Distributed Tracing

Jesus Rios
IBM Research

jriosal@us.ibm.com

Saurabh Jha
IBM Research

Saurabh.Jha@ibm.com

Laura Shwartz
IBM Research

lshwart@us.ibm.com

Abstract—Finding the exact location of a fault in a large
distributed microservices application running in containerized
cloud environments can be very difficult and time-consuming.
We present a novel approach that uses distributed tracing to
automatically detect, localize and aid in explaining application-
level faults. We demonstrate the effectiveness of our proposed
approach by injecting faults into a well-known microservice-
based benchmark application. Our experiments demonstrated
that the proposed fault localization algorithm correctly detects
and localize the microservice with the injected fault. We also
compare our approach with other fault localization methods.
In particular, we empirically show that our method outperforms
methods in which a graph model of error propagation is used for
inferring fault locations using error logs. Our work illustrates the
value added by distributed tracing for localizing and explaining
faults in microservices.

Index Terms—microservices, distributed tracing, fault localiza-
tion, failure diagnosis, debugging, root cause analysis

I. INTRODUCTION

Gartner estimates that by 2025 over 95% of new digital

workloads will be deployed on cloud-native platforms [1]. To

provide high level agility, the cloud platforms become more

complex in the face of flexibility with deeper layers of virtu-

alization. The ephemeral nature of containers is advantageous

for development, but contributes to challenging SREs task

of correctly diagnosing incidents and resolve them timely.

Effective response to application failures requires (i) being

able to detect that something is wrong with the system from

monitoring and probing signals, (i) diagnose the origin of the

problem, while maybe deploying some temporary mitigation

actions, and, finally, (iii) fixing the system with a permanent

solution. This is, in general, labor intensive, time consuming

and expensive.

With the advent of cloud and containerization technologies,

modern applications are built using cloud-native microservices

architectures. Microservices-based architectures break appli-

cations into multiple loosely coupled service components that

can be developed, tested and deployed independently. This

allows for the accommodation of heterogeneous implementa-

tion technologies, more scalability, improved resilience, ease

of deployment, and achievement of business agility [2]. These

properties make microservices ideal for implementing DevOps

software principles [3]. However, in practice, identifying the

location and cause of an issue in this kind of applications

becomes very difficult, especially for architectures with a large

number of microservices; thereby, preventing its adoption as

exemplified by Segment’s decision to go back to Monolith [4].

Traditional monitoring and debugging tools for monolithic

applications do not work properly when applied to distributed

applications [5]. Quick detection and localization of these

failures is therefore key for improving the reliability and

availability of production microservice applications. However,

current industry debugging practices do not seem to be at a

level of maturity to meet this challenge [6].

Logs are useful in debugging the cause of an observed

problem in an application. However, searching through log

entries can be very time consuming and lead to cognitive

overload of the SREs, specially if the logs are distributed

across many microservices. In distributed systems, logs are

not contextualized and thus it is not possible to understand

the flow of events that generated them as requests travel

from one microservice to another. Logs are local and only

report what happens at a microservice level. We need a global

view of the system that can be used to correlate those logs

across microservices, for example by specifying the request

they belong to. This can be achieved employing modern

distributed tracing tools [7]. We use trace data to understand

error propagation and to pinpoint the location of the original

fault without the need to reproduce the problem.

Fault localization is the process of tracing back failure

signals through a distributed application to locate the first

failing component. We present here a new approach that

monitors in real-time traces and logs from a production

application. When errors are detected in a trace a novel

fault localization algorithm is automatically triggered to find

the faulty microservice that is at the root of the problem.

Once found, the logs at such microservice are queried using

information from such a trace to narrow down an explanation

for the cause of the fault. We demonstrate this approach with

an experiment in a well known microservice benchmark and

compare our results with other approaches in the literature.

Our contributions include the following.

• We have developed an unsupervised causal inference algo-

rithm to localize faults in microservice-based applications

that incorporates domain knowledge on (i) failure propaga-

tion, and (ii) the client-server model of communication. The

algorithm monitors traces and extracts at runtime a causal

model for each problematic trace; thereby, capturing the

causal interactions between requests and microservice error

489

2022 IEEE 15th International Conference on Cloud Computing (CLOUD)

2159-6190/22/$31.00 ©2022 IEEE
DOI 10.1109/CLOUD55607.2022.00072

relations that is missing in most casual inference approaches

to fault localization [8].

• Context-aware log mining. We use the result of the causal

inference algorithm to extract the logs that are most relevant

to observed request failures. In particular, we extract and

present only logs from the service and during the time-

window of the span where the fault happened; thereby,

significantly reducing the logs required to be debugged by

SREs during an ongoing investigation.

• We demonstrate the efficacy of our proposed approach on

TrainTicket, a widely used microservice benchmark appli-

cation, using fault injection experiments. We show that our

algorithm always accurately identifies the faulty service;

outperforming the approaches reviewed in Section VI.

II. BACKGROUND

Here we provide background on the fault localization prob-

lem and distributed tracing.

A. Fault Localization

Large cloud applications based on microservices architec-

tures are composed of many interdependent microservices.

When a problem occurs in one microservice, the error prop-

agates to microservices which directly depend on this ser-

vice. This has a ripple effect with faults propagating across

microservices, creating a storm of failures steaming from all

the affected microservices. Finding the exact location of the

originating fault is not an easy task due to a vast amount of

errors generated by all microservices.

Approaches to fault localization in distributed systems vary.

We could classify them based on the observability assumptions

each approach makes. Thus, they may consume different

monitoring data types, meaning their input may include logs,

metrics, traces or a mix of these. Another classification criteria

could be their scope. Faults at the application level are not the

only type of problem these approaches may considered. Some

approaches also focus on localizing application performance

issues, infrastructure-layer faults or a mix of these.

In terms of their methodology, most approaches construct a

graph modeling the inter-dependencies among the components

of the system and use this graph to localise a detected issue.

For example, Sage [9] models microservice dependencies with

a causal Bayesian networks and uses graphical variational

auto-encoders to locate the microservices that have caused

a performance issue, detected as a QoS violation. Micro-

scope [10] and MicroHECL [11] use propagation and correla-

tion analysis over a dynamically built call graph to rank root

cause candidate locations. Alternatively, MonitorRank [12]

uses the call graph to build an unsupervised model for ranking.

Some approaches assume knowledge of the dependencies

between components in the system, and use this information

in their correlation analysis [13]. Others have proposed the

use of Granger causality and the Personalized PageRank

algorithm over a dependency graph to locate root causes [14].

MicroRCA [15] also uses PageRank for fault localization but

after computing anomaly scores for nodes in a graph based

on detected anomalies. Although less common, there are also

approaches that do not explicitly model causal or dependency

relations among system components. For example, supervised

learning methods such as those in [16] and [17] have been pro-

posed for directly finding system components causing failures.

These methods leverage automatic fault injection frameworks

to generate the necessary training data for learning the relation

between failure symptoms and root causes.

B. Distributed Tracing

Distributed tracing has grown out of the need for under-

standing the behavior of applications with distributed archi-

tectures. For example, in this kind of applications, every time

a user takes an action, requests are propagated through the

distributed cloud environment. Tracing provides observability

of communication and data as it flows across the many

different components of the application.

A trace represents the path of a request through the various

services comprising an application. Each trace has a unique

identifier and consists of spans. A span represents a logical

unit of work, with a start and finish time, carried out by some

service component within the application. Each span within a

trace has a unique identifier and a possible reference to other

related spans. For example, if service A makes a HTTP request

or RPC to service B, we have a direct causal relationship

between these two services: service A depends on service B
to do its work and, indeed, service A must wait for B to

respond to successfully complete that work. In other words, a

failure in B’s operation may cause A’s operation to fail. From

a tracing perspective, the span representing the work carried

out by service B is the child of the span representing the work

by service A. In this child-parent relation, the span in B is

the child span and the span in A is the parent span, and the

parent span depends on the child span to do its work.

Spans and their parent references within a trace form a

tree representing the dependencies between microservice in

processing requests. The root span of such tree will be the span

with an empty parent span reference and typically represents

the start of a user transaction in the application.

There are two main methods to generate tracing information

in a distributed application: black-box based and annotation-

based. Black-box based tracing uses statistical analysis to infer

span correlations post-hoc. This method needs vast amounts

of data and typically is error prone. Annotation-based tracing

methods, such as those popularized in [18], propagate anno-

tated data from one microservice to the next as request travels

through the application. The propagated data constitutes the

context of a trace and includes information such as globally

unique identifiers for the trace and the parent span. This

information is preserved for reconstruction of the distributed

trace. Trace context propagation requires instrumentation of

application code. In the last decade, there have been a lot of

progress towards making this instrumentation easier, specially

with the appearance of open instrumentation standards as

well as multiple vendors solutions for automatic instrumen-

tation supporting the most popular programming languages

490

and frameworks [19]. There are also open-source distributed

tracing systems such as Zipkin and Jaeger that can generate,

collect and store tracing data for instrumented microservice

applications [20].

III. OUR AUTOMATED FAULT LOCALIZATION SOLUTION

In this section, we outline the design principles and design

overview of our Faulty Service Finder (FSF), a fault local-

ization and diagnostics framework to automate the task of

detecting application-level faults, identifying their originating

location and selecting the logs that may explain the cause of

each fault.

A. Design Principles

FSF addresses the challenges of identifying faulty microser-

vices and providing diagnostic information using the following

approaches:

1) Focusing at the application layer to support multi-cloud
and hybrid cloud environment. A key objective of FSF

is to ensure that the approach is extensible and usable

across different multi-cloud and hybrid cloud environment.

Therefore, FSF only gathers telemetry data that is available

at the application layer as gathering low-level data from

across the full system stack is often not feasible due to

organizational and contractual constrains.

2) Fusing heterogeneous telemetry data for increased ob-
servability. FSF uses telemetry data from across the mi-

croservice application, capturing both traces and error logs

that are readily available, to increase spatial and temporal

observability. The fusion and comprehensive analysis of the

data enable both fault localization as well as diagnostics.

3) Causal inference for explainable fault localization. FSF

uses causality-driven inference technique for explainable

fault localization. It uses knowledge of (i) failure prop-

agation, and (ii) the client-server model of communica-

tion. FSF extracts the causal model at runtime from each

problematic trace; thereby, capturing the causal interac-

tions of requests with microservice’s error relations, that

are missing in most casual inference approaches to fault

localization [8].

4) Context-aware log mining. FSF uses the result of the

causal inference algorithm to extract the logs that are most

relevant to observed request failures. In particular, FSF

extracts and presents logs from the localized faulty service

and during the time-window of the span where the fault

happened; thereby, significantly reducing the logs required

to be debugged by SREs during an ongoing investigation.

5) Unsupervised ML models for dealing with insufficient sam-
ples and rare failures. FSF uses unsupervised ML models

and leverages domain knowledge on the system design

and architecture to alleviate the challenges of (i) labeling

failures, and (ii) acquiring training data on rare failures,

especially on rare one-off failures.

6) Low-cost automation for timely analytics. The use of

unsupervised methods alleviates the need for costly training

and re-training of models.

Fig. 1. Fault localization and log selection using distributed traces.

B. Design Overview

Figure 1 shows the overall design of FSF, and its integration

with a microservice application. FSF only requires access

to the following monitoring capabilities: (i) annotation-based

tracing (e.g., Jaeger), and (ii) application logs collection (e.g.,

LogDNA). Furthermore, we assume that the application has

been instrumented to support annotation-based end-to-end

distributed tracing at the application-layer. FSF is independent

of the underlying container orchestration capabilities, and

therefore, is compatible with wide variety of orchestration

frameworks such as Kubernetes, OpenShift and Docker Swarm

among others.

FSF consists of three services: (i) trace filter (1), (ii) fault

localization (2), and (iii) dashboard (3). FSF trace filter

acts as interface between the tracing coordinator and the fault
localization service. It actively consumes and processes each

trace in the trace queue from the tracing coordinator in real

time, and writes the trace id to the FL queue if any of the spans

in the trace have HTTP errors. These FIFO (First-In-First-Out)

queues are shown in gray boxes in Figure 1 and can be imple-

mented using streaming services or data pipeline services such

as Kafka for example. Fault localization service consumes

data items from the FL queue. For each item in FL queue,

it extracts the trace data by querying the tracing coordinator
and uses that to estimate the originating location of the fault

(i.e., identifies the faulty application service) causing all these

errors as well as the parameters necessary to query the logs.

Using those parameters, it queries the log collector service

to extract the relevant logs that could explain why the fault

happened in the first place. This approach aims at reducing the

number of logs that SREs need to analyze to localize and find

the root cause of an issue within a microservice application.

491

Typically, these kind of applications emit a vast number of

logs, sometimes in the order of thousands per second. Reduc-

ing the number of logs to focus on, whenever an issue occurs

with the application, to a small handful subset, is of great

benefit to SREs. Finally, the fault localization service writes

a tuple consisting of <trace ID, faulty service,
contextual logs> to the FSF database. Services cor-

responding to the queues and database are not shown in the

figure for clarity purposes. Finally, SREs can interact with the

dashboard service through a web API (or web server) to query

and filter the data in FSF database. Next, we describe in detail

fault localization as it is the core service of FSF.

C. Fault Localization

FSF uses Algorithm 1 to identify faulty application services.

It applies causal inference principles to the problem of fault

localization. The algorithm monitors in real time the traces

generated by the system. Using traces as an input, it detects

trace-spans containing errors and returns an estimate of the

originating fault location as well as a small set of logs to assist

with root cause analysis. For each trace, we use the spans’

parent of references to extract the causal relations between

spans in that trace. This constitutes our causal model, which

takes the form of a tree and is stored in a data structure that

gives us for every span, its parent span in the trace. To build

this tree, we just loop through all the spans in the trace and

look at their states to find out their parent span. Note that the

root span is defined as the only span in the tree with no span

parent and therefore with an empty parent of value. Spans are

identified by their unique IDs given at creation and kept as

part of the data carried out in their states.

Given the trace graph, a tree in this case, we can identify

the span that started the chain of errors using causal inference.

We perform this by looping through all the spans in the trace

that have failed, i.e., such that span ∈ ERRORSPANS(trace).
From those spans we remove from consideration the ones that

have failed children, i.e., such that CHILDREN(span, trace)∩
ERRORSPANS(trace) �= empty, as their failure can be ex-

plained by a children failure. Thus, our algorithm only keeps

those spans whose failure cannot be explained by any other

span, and therefore they must contain localization information

of application failure. This is how we direct causal inference

towards finding explainable fault localization information.

If a retained span represents a failed operation carried out

by the server microservice of an HTTP request, then this span

can be considered to be at the root cause of the failure. We

consider that a response operation handled by a server span

has failed only when a 5xx HTTP status code is associated

with the request. For example, a 500 error code would mean

that the operation represented by the server span could not

successfully respond to the client due to an internal failure. If

this failure happens in a retained span, no other span exists

that may have caused this failure and therefore we consider

this to be the fault location. However, if the retained span is a

client span failing when trying to get a response from a HTTP

request with, e.g., a 503 (Service Unavailable) error code, then

we conclude that the root cause should be located at the server

side of that HTTP call (even when no server span is generated

for this request). Thus, if the error at the retained client span

comes with a 5xx status code, we conclude that the fault

must be located at the server side of that HTTP request; on

the other hand, if the request status code is in the 4xx class,

the error would be caused by the client span itself. A 4xx

error code indicates that the request failed due to a fault of

the client sending the request. We only mark spans with 4xx
error codes as erroneous if they are client spans. A server span

with a 4xx error code is never considered erroneous. Thus, a

4xx error in a retained client span cannot be caused by any

other erroneous span, and therefore the fault is localized to the

retained span’s microservice. We mark client spans with 5xx
status codes as erroneous for dual purpose: to locate faults

when the server side is not available and to make sure error

propagation paths follow connected causal chains in the trace

tree.

In Algorithm 1, the function kind(span) parses the data

in the span to find out whether it operates as a client or a

server of a HTTP request. Similarly, http.url host(span)
deduces the host’s location of the request associated with

a span, using the host component for the request’s

URL, and http.status code(span) extracts the HTTP re-

sponse status code. The functions service name(span) and

container name(span) provide respectively the names of

the microservice and pod/container associated with a span’s

service and process.

After localizing a fault, Algorithm 1 retrieve the logs

emitted by the service associated with the retained span for

the span’s duration. To do so, we use the span’s start and

finish timestamps as well as the identifier of the span process

and extract the logs generated by that container between the

span’s start and finish timestamps. Note that in the case the

faulty service is not available, FSF pulls the logs from a parent

service. The logs selected by FSF could be used to explain

the cause of the fault, and would typically revel the root cause

down to the code line. FSF is then able to extract relevant logs

automatically when a fault manifests in an application using

causal-driven inference to define the log selection criteria.

FSF also needs to alert SREs when failures are detected,

so they can take the necessary remediation and repairing

actions as quickly as possible. FSF monitors the application

in real-time at the request level. Thus, for each fault in the

system, every time a request hit the faulty microservice the

same fault is detected and localized. Also, the selected logs

will be essentially the same. Sending an alert every time this

happens will overload SREs with receptive information about

the same fault. Alert grouping or silencing methods, such as

those available in Prometheus Alertmanager can help with

this by simple grouping alerts of similar nature into a single

notification or by silencing alerts based on regular expression

matches to previously sent active notifications. In the case we

have limited resources to address multiple identified faults,

we could use the number of traces associated with each fault

to prioritize those resources. This give us a proxy for the

492

Algorithm 1 Fault localization algorithm

procedure MAIN(trace):

error spans← ERRORSPANS(trace)
for all span ∈ error spans do

children← CHILDREN(span, trace)
if children ∩ error spans = empty then

error code← http.status code(span)
if kind(span) = “server” then
faulty ms← service name(span)

else if kind(span) = “client” then
if error code = 4xx then

faulty ms← service name(span)
else if error code = 5xx then

faulty ms← http.url host(span)
end if

end if
print Fault location: faulty ms
print logs← GETLOGS(span)

end if

procedure CHILDREN(span target, trace):

children← empty
for all span ∈ trace do

if parent(span) = span target then
children← children ∪ {span}

return children

procedure ERRORSPANS(trace):

error spans← empty
for all span ∈ trace do
http code← http.status code(span)
if (http code = 5xx) or

(http code = 4xx and kind(span) = “client”) then
error spans← error spans ∪ span

return error spans

procedure GETLOGS(span):

logs← QUERY(database with logs,

from: start timestamp(span),
to: finish timestamp(span),
container: container name(span))

return logs

importance of each fault in term of the number of affected

requests. In order to avoid spending effort in low impact

faults, we can also establish thresholds that would need to

be surpassed before alerting SREs.

IV. EXPERIMENT

We demonstrate the effectiveness of our proposed fault

localization approach on a publicly available and well known

microservice application benchmark. We inject faults into

different end points of this application and see whether our

fault localization algorithm is able to correctly detect and

locate the injected faults. Given the uptake in the use of causal

inference to develop algorithms for fault localization [8], we

also empirically compare the performance of our algorithm

with other approaches based on causal inference. The afore-

mentioned approaches typically reason over an application-

level graph, which models causal dependencies between errors

occurring at the various microservices, instead of reasoning, as

we do, over a request-contingent model of causal dependency

associated with each trace. Thus, we have implemented an

archetype version of these kinds of approaches and compared

its performance with Algorithm 1.

A. Set-up

We set up our experiments on an OpenShift Container

Platform (OCP) cluster, which is installed on cloud-based

infrastructure. OCP is an augmented Kubernetes distribution

developed by RedHat. Our OCP cluster consists of 6 nodes

running OpenShift 4.7 version.

Monitoring. We use logDNA to collect application-level

logs. We created a logDNA service instance and deployed the

logDNA agent in our OCP cluster. The logDNA agent collects

logs from all microservices. The logDNA service instance

provides an API for searching and exporting the collected logs.

We chose to use Istio service mesh [21] technology along

with Jaeger to generate and collect tracing data [20]. We

installed in our OCP cluster the RedHat OpenShift service

mesh, an Istio distribution adapted to OCP and expanded with

some additional features. Jaeger is an open-source distributed

tracing tool which is part of this service mesh installation. The

Istio proxies that make up the service mesh are configured to

send tracing spans data to Jaeger, which in turn will process

and centralize this data.

Workload and user-flows. We decided to use Train-

Ticket [22], an open-source microservice application bench-

mark, to test our fault localization approach. We deployed

Train-Ticket in our OCP cluster and added the whole applica-

tion to the service mesh. Train-Ticket consists of 41 microser-

vices simulating a train ticket reservation system in which

users can search for trains, book tickets, make payments,

collect paid tickets and enter stations to board trains, among

other things.

There must be a user request that interacts with the faulty

microservice for a fault to be active and manifest. Thus,

we created user-flows for Train-Ticket that simulate users’

interactions with the application’s user-interface, generating

a set of cascading requests to the backend. Our user-flows

cover 33 of the 41 microservices in Train-Ticket. We have

not included in our user-flows the simulation of actions taken

by the admin role which is in charge of managing orders,

routes, users, stations, trains, prices and so on, leaving as a

consequence their corresponding microservices uncovered by

493

our user-flows.
Fault types. We inject the following faults to validate FSF.

(a) http-service-unavailable (HTTP 503) which mimics a

microservice availability failure. In this fault, all requests

directed to the injected microservice fail. Such failures

occur because of application failures (e.g., hang or crash),

infrastructure failures (e.g., pod failure/restart) or deploy-

ment issues (e.g., service unable to start).

(b) http-bad-request (HTTP 400) which mimics request cor-

ruption. In this fault, the injected microservice (client)

sends a bad HTTP request to a server microservice. Such

failures can occur due to malformed request syntax (e.g.,

a bug), invalid request message framing (e.g., network

error) or deceptive request routing (e.g., session hijack).

(c) http-resource-not-found (HTTP 404) which mimics a re-

source not found failure. In this fault, the server microser-

vice is available but the resource requested by the client

microservice is not found by the server microservice.

Such failures occur due to incorrect API specification,

bad code, or version upgrade issues.

We use the above three fault types because (i) they cover both

clients (HTTP 400/404) and server (HTTP 503) faults, and

(ii) these fault types can occur due to operational, misconfig-

uration or code issues.
Fault injection. We use Istio’s fault injection capabili-

ties [23] to simulate http-service-unavailable as Istio can just

intercept any request directed to that particular service and

return an HTTP 503 error code; thereby, avoiding the need

to actually terminate the container in which the microservice

is running. We inject http-service-unavailable in each of the

different microservices covered by our user-flows, except for

the microservice associated with the user-interface, for a total

of 32 faults.
We inject http-bad-request and http-resource-not-found by

making changes to the application source code and building

faulty versions of each modified microservice. We do not use

Istio to simulate these two types of faults since intercepting

requests before reaching the destination microservice and

returning HTTP error codes in the 4xx class would lead to

missing spans and logs. http-bad-request and http-resource-
not-found cannot be emulated for microservices that are at

the end of the call chain (i.e., they are leaf nodes in the call

chain). Thus, we were able to inject http-bad-request and http-
resource-not-found in only subset of the microservices (18 in

total), resulting in 36 faults across both these faults types.
Faults were injected sequentially, one at a time, so there

were never more than one injected fault into the application

at the same time. During each fault injection experiment, with

only one fault injected in one of the microservices, a fixed

set of user-flows always executed in the background. Each

fault was simulated for a couple of minutes to ensure that

the injected fault manifested and impacted the user requests.

After each injection, the injected fault was removed from the

application before starting another fault injection experiment.

At the end of each fault injection period, we collected all the

logs and traces generated by the application.

B. Results

Algorithm 1 perfectly detected and located all injected

faults, which included http-service-unavailable, http-bad-
request, and http-resource-not-found. We note that during the

experiments, FSF never produced a false positive, i.e., an

estimate of a fault that did not exist in the system, whether

injected or internal.

During the time each fault was injected, the subset of logs

extracted by our algorithm, with every trace that exhibited

span errors, always indicated the presence of the injected fault.

The logs also provided information about the failed requests

that generated the errors. The specifics of the information

depended on the programming language and framework of

the microservice sending the request. In the case of HTTP
400/404 faults, the logs included more details to help

solve the problem. For example, when we injected a http-
resource-not-found fault in ts-ui-dashboard, a Nginx microser-

vice, the selected logs included the (modified) API endpoint of

the resource being requested. The fault was injected through

source code modification. When the same type of fault was

injected, for example, in ts-ticketinfo-service, a Java-based

web microservice, the selected logs not only indicated a

“HttpClientErrorException: 404 Not Found”, but also the file

and line in the source code where the failed request to ts-basic-
service took place. There, we could see the URI path modified

by the fault injection that generated the error. In section V, we

discuss how the explanation obtained from logs can be used

to fix the observed request failures.

C. The Value of Distributed Tracing in Causal Inference

To illustrate the value of distributed tracing in our algo-

rithm, we remove traces from consideration. We apply the

same causal inference principles as in Algorithm 1 to error

logs, assuming we have a causal model of error propagation.

Learning this causal model directly from error logs has proven

to be very noisy. We instead use the dependency graph as

a proxy model of the causal dependencies between errors

occurring at the various microservices. This model is easy

to estimate in practice by deploying black-box monitoring in

each microservice. In our experimental setting, the dependency

graph is provided by Istio after running our userflows. We

then apply causal inference over this graph to estimate fault

locations from the observed logs over each fault injection

period. Thus, we assume that the application’s causal graph

is known.

Thus, we have implemented a fault localization algorithm

based only on logs that applies the exact same causal infer-

ence principles as in Algorithm 1 but over the application’s

dependency graph. Fault locations are estimated by eliminating

microservices in this graph with error logs that are inferred

as being caused by others, until obtaining a set of candidate

fault locations. We also implemented an improved version

that applies text analytics techniques to reduce fault location

estimation sets when they are imprecise, i.e., containing too

many possible locations. Fig. 2 shows how the performance of

494

Fig. 2. Comparison (lower loss values are better) of fault localization results for causal inference methods with and without distributed tracing.

Algorithm 1 compares with these other two fault localization

algorithms, which do not use distributed tracing.

To measure the algorithms performance, we define the loss
of a fault localization estimate as the number of incorrect

locations in the estimation set. If this set does not contain the

location of an actual fault, the loss would be equal to the size

of the application topology, i.e., our causal model: in Train

Ticket, a total of 34 microservice locations. The topology in

this case only includes microservice locations covered by our

userflow, since we assume that the investigation is only limited

to that part of the application. This loss can be interpreted as

the (worst case) number of incorrect locations that an SRE

would have to go through to confirm the existence and location

of a fault. For example, if the estimate consists of the true

location of the only existent fault in the system, the loss of

the estimate would be 0: there are no incorrect locations in the

set. If the estimation set consists of two locations and only one

happens to correspond with the fault in the system, the loss

would be 1: the estimation not only contains the location of

the true fault, but also another incorrect location that an SRE

would have to validate. If the estimation set has n elements

and none of these are correct, the loss would be 34, since

an SRE would have to go through the n microservices in the

estimation set first, and after realizing that none of them are

correct, then go (in the worst case) through the complete list

of possible locations, 34 in our experiments, to find out where

the true fault location is (if there is one in the system).

We computed the loss of each algorithm’s location estimate

for the same 32 http-service-unavailable fault injections in

Section IV-B, see Fig. 2. Note that lower loss values mean

better estimates. We see that Algorithm 1 clearly outperformed

the other two algorithms, which restricted causal inference to

reasoning only with logs data instead of traces. The results

from the underperforming algorithms are comparable with

state-of-the-art approaches that use only log data to locate

faults. After evaluating various log-based methods over the

same benchmark application, Train-Ticket, and injecting http-

service-unavailable faults in 17 of its 41 microservices, the

best performing method [14] achieved an average loss no

better than 8.24. Our straightforward causal inference method

over logs resulted in an average loss of 10.84, and of 5.69
when improved with text analytics. Algorithm 1 achieved a

perfect average loss of 0.

In Section VI, empirical results from the literature show

that current causal inference based approaches fail to perfectly

and accurately locate these kind of faults. The failure is due

to the use of application-level causal models, such as the

dependency graph, obtained through aggregation over many

requests. However, causal dependencies between errors in mi-

croservices interact with traces. For example, if microservices

A and B depend on C, then an error in C propagates to A or

B, depending whether the request to C in the underlying trace

comes from A or B. If we do not take into account these causal

interactions in our inferences, we will not be able to determine

causality with certitude, and thus leading to inaccurate fault

location estimates. Trace trees are the solution because they

provide a different causal model for each trace, and therefore

reflect the causal interactions between error propagation and

requests in a trace.

V. EXPERIENCE WITH DIAGNOSIS AND MITIGATION.

In the following section, we describe our experience in using

FSF for localizing and diagnosing the TrainTicket application.

A. FSF Diagnosis Power in Practice

FSF is able to detect, localize and diagnose faults for any

application in real-time, as and when they occur, as soon as the

application is deployed. This is because FSF uses unsupervised

causal inference (see Section III); thereby, requiring no train-

ing whatsoever either in staging or production environment.

FSF demonstrated this ability when it helped us diagnose and

fix internal (non-injected) faults in Train-Ticket the moment

we start using it.

495

In our experiments, we noticed that Train-Ticket application

exhibited request errors when we started running the user-

flow following a period of inactivity. This erroneous behavior

disappeared after a minute or so. For this reason, we always

waited for a period of time before starting injecting faults in

our experiments. However, FSF picked up the traces during

this warn up period and we were able to automatically uncover

the root cause of these errors. In particular, FSF located

the same type of fault in every microservice connected to

a MongoDB database instance. The selected logs in each

case explained the faults as HTTP 500 Internal Server Errors

caused by a MongoDB Socket Exception raised when the

microservice tried to connect to its MongoDB database after

a period of inactivity. We searched for a solution to this issue

using the details in these logs and found that changing the

socket configuration would enable the connection to stay alive,

and thus solve the problem.

B. FSF Explanatory Power

FSF can enhance the explanative power of logs despite

them being noisy due to the lack of standardization (e.g., free-

flow use of error explanation as well as language dependent

logs) and enforcement (e.g., incorrect labeled severity levels).

Moreover, using only logs to localize and diagnose a fault may

not be sufficient or efficient.

When logs lack some of the information necessary to

identify unavailable microservices, FSF causal inference can

find this information in the traces. For example, when a http-
service-unavailable fault was injected in the ts-auth-service
microservice, every time the userflow generated a trace with

errors, FSF always selected one log coming from the ts-ui-
dashboard microservice to explain the correctly localized fault

in ts-auth-service, which did not emit any logs due to its un-

availability. This log correctly explained the errors seen in the

trace as the consequence of a failed HTTP POST request from

ts-ui-dashboard to a resource with a URI (Uniform Resource

Identifier) specified by its server endpoint /api/v1/users/login,

with a 503 status code indicating that the server microservice

of that request was unavailable. However, the log by itself

did not provide information of the host at the server-side of

the request, necessary to identify the unavailable microservice

causing the HTTP 503 error. The server host information

could only be found in the trace data. The client span

created to represent the HTTP request from ts-ui-dashboard
to ts-auth-service included the URL of the request, in this

case http://ts-auth-service:12340/api/v1/users/login. The func-

tion http.url host was used by FSF to extract the host compo-

nent, ts-auth-service, identifying the unavailable microservice.

We also noticed during our experiments that many logs

selected by FSF have an empty or null value in their level
attribute, despite being essential to explain the detected faults.

In these cases, they were in fact the only logs in the system

revealing that HTTP 503 errors have occurred during the fault

injection. We would have expected these logs to come with at

least an error log level value so they can be easily caught by

standard log level rules in monitoring systems. An advantage

of FSF in this regard is that it does not depend of the log level

attribute to assess the importance of logs when selecting them.

C. FSF Power to Detect Multiple Faults

FSF is able to detect and localize multiple independent and

concurrently occurring faults. For example, a demonstration

of this ability occurred in one our experiments. When we

injected a http-service-unavailable fault into ts-verification-
code-service, we noticed that FSF identified two independent

concurrent faults: the injected fault (HTTP 503) and another

internal fault (HTTP 500) that was estimated to be located in

ts-assurance-service. Since we did not inject a second fault

during that fault injection experiment, this estimate seemed

wrong at first. However, further investigation revealed that

there was indeed an actual internal fault that already existed

in the application in that location.

We were able to reproduce the non-injected accidentally

occurring fault without the other one having to be injected

into the system by simulating a user searching for trains

without first login into the application with his name and

password. Our typical user-flow did not reveal this fault

before because it always started successfully login the user

into the application. Only the presence of the http-service-
unavailable fault in ts-verification-code-service made the user-

flow unable to successfully login, triggering the manifestation

of the internal fault in ts-assurance-service, so it could be

detected by FSF during such injection period. In this case,

the selected logs identified a HTTP 500 Internal Server Error

as the cause of the fault, meaning that ts-assurance-service
encountered an unexpected condition that prevented it from

fulfilling a request from ts-ui-dashboard. The information

about where the request originated came from trace data and

did not appear in the logs. The selected logs also tell the type

of exception that caused the fault, indicating the user could

not be authenticated due to a malformed and therefore invalid

JSON Web Token (JWT) that was rejected. The JWT string

was empty and the exception not properly handled. The logs

also pointed to the lines in the source code of ts-assurance-
service where the exceptions occurred. After inspecting these

lines of code, we easily realized that a possible solution to fix

this fault is to handle this exception by sending the user to

the login page every time the exception occurs. This would

require a small modification to the microservice source code.

This also demonstrates how SREs can leverage FSF to fix

faults.

VI. COMPARISON WITH OTHER APPROACHES

We review some state-of-the-art systems from the academic

literature that are aimed at detecting and locating faults in

multi-component applications.

Path-based approaches. Path-based approaches leverage

metrics data along with the application topology (known

apriori) to detect and localize faults. These approaches re-

quire handcrafted heuristics to interpret and design anomaly

detection algorithms in order to use metrics data successfully.

496

Examples of this approach include: MicroHECL [11], Mon-

itorRank [12], and Microscope [10]. MicroHECL is a root

cause localization system, in which observability is limited

to metrics such as inbound and outbound service calls and

response times for each application component. Every time

MicroHECL detects an anomaly such as a performance, relia-

bility or traffic issue, it builds a service call graph from metric

data. Fault localization is based on the analysis of possible

propagation paths over this graph, starting from the service

node in which the anomaly is detected. If the analysis leads

to multiple root cause candidates, these are ranked by their

degree of association to the detected anomalous service, which

MicroHECL measures by computing the Pearson correlation

coefficient between observed metrics in the candidate and de-

tected service nodes. MonitorRank and Microscope are similar

in techniques with the exception of their heuristics to use

metric data. MicroHECL was tested over 75 availability faults

identified by operations engineers in the Alibaba e-commerce

web-application, achieving a fault localization accuracy rate of

48%. For comparison, MonitorRank and Microscope achieved

fault localization accuracy rates of 32% and 35% respectively

when applied over the same data.

Trace-based approaches. We review as examples of this

kind of approaches, Pinpoint [24], MEPL [17] and TFI [25],

since they are significantly different from one another. Pinpoint

is one of the early work that design and develops a trace-

based fault localization technique. Unlike our approach that

explicitly models fault propagation for each trace, Pinpoint

learns and dynamically update a baseline model of the normal

behavior of the application by aggregating tracing data gener-

ated by user requests. Pinpoint detects anomalies by comparing

new requests against this model. For each detected anomaly,

a decision tree analysis is carried out to locate the faulty

component causing the anomaly. Pinpoint was tested on three

applications of increasing complexity. In their experiments on

Java applications, Pinpoint was able to detect just over 90% of

the injected faults and successfully locate up to approximately

88% of the detected faults, resulting approximately in a 72%

success rate for detecting and correctly locating faults.

MEPFL collects distributed traces from a target application

running in a testing environment, where faults are injected in

order to train a detection and fault localization model for use

during production. This model consists of an input of expert-

defined features populated from trace data and an output

representing whether an error has occurred (detection) and, if

so, which microservice (location) is causing it. MEPL achieves

high precision and recall when it is evaluated on exactly

the same faults in which the model was trained. However,

performance drops significantly when tested on new faults

(different than the ones used for training but of the same type),

achieving precision between 58.6 - 98.4% and recall between

64.7 - 98.3% in detection, and a localization accuracy rate of

78.8% in localization.

TFI uses fault injection to populate a database of failures

and corresponding trace fingerprints for a given application.

TFI is triggered every time an issue is reported. The local-

ization of the root cause is attained by finding the failure

in the database whose trace fingerprint is the closest to

the one collected when the issue occurred. This technique

requires costly fault injection experiments for each application

to build the database of fingerprints. The implementation of

this approach by [17] only achieved a 11.7% fault localization

accuracy rate on the same data in which MEPFL was tested

on.

Putting FSF in perspective. Approaches that simulate

faults in a testing environment to train a detection and localiza-

tion model are limited by the type of faults considered during

this phase and may lead to decreased accuracy in practice (e.g.,

as in the case of MEPFL). Also, these approaches assume

that the application is fault-free before injecting any faults

for training purposes. The existence of unknown faults in the

application leads to noisy training data and models unable to

recognize those faults in production. Supervised training also

requires accurate labels, which may be difficult to achieve if

we want to leverage production data, where it is not always

possible to know what fault is in the system during a period

of abnormal behavior: even if we see errors popping up, it

might not be clear in practice what is causing those errors,

so no fault location label can be specified. In addition, model

training is time consuming and must be done for each new

application. In particular, if the application is updated and

changes are introduced, we will need to also update the model.

FSF works directly on production data without the need to

train any model. Thus, FSF does not have these limitations or

the need to make these kind of assumptions.

In contrast, FSF focuses the computations only on traces

with errors and use the application logs to find and convey

causal explanations for the seen errors. None of these other

approaches do that, or try any explainability beyond local-

ization. Moreover, our proposed approach does not require

training and is application-independent; making FSF ideal for

adoption in production

VII. DISCUSSION AND LIMITATIONS

Limited fault models. In this work, we explicitly focus

on service-level fail-stop-based faults (i.e., request failures).

Thus, FSF, in its current form, cannot detect and localize

certain class of faults (or requires additional modifications)

as outlined:

(a) Performance-related issues. It is possible to convert ob-

served anomalous tail-latency into a timeout fault by ap-

propriately setting restrictive request timeouts [26]. FSF

can potentially use model-based techniques to predict

optimal timeout values [27], [28] or use SLO objectives

to set timeouts; allowing FSF to detect and localize

performance-related anomalies.

(b) Infrastructure-related faults. Infrastructure faults such as

a host going down or network congestion can disrupt

multiple services at the same time leading to multiple

correlated service failures. Although FSF can detect and

localize each of these service faults independently, it

will not be able to identify the real cause which is in

497

the underlying infrastructure. However, it is possible to

combine infrastructure topology with traces to identify

infrastructure faults uniquely as long as there is sufficient

differential observability [29], [30].

Tracing overhead. Our approach assumes that distributed

tracing is enabled for the supported application. This does

not come without some work to make it happen. The gen-

eration of distributed traces requires the instrumentation of

the application’s source code or its lower-level libraries. Al-

though, nowadays, there is support for automatically instru-

menting microservices written in the most popular program-

ming languages and frameworks, reducing significantly the

effort needed in practice to set up this kind of monitoring.

In addition, the use of any tracing system will inevitably

add some small overhead, as it is typically the case with

any kind of monitoring, including logs and metrics. On the

other hand, our work has shown the debugging benefits of

having a distributed tracing system monitoring our microser-

vice application, which in our opinion clearly make up for the

instrumentation effort and overhead coming from this kind

of monitoring. The evaluation results reviewed in Section VI

along with the ones obtained in Section IV, show how the

performance of fault localization approaches depends on the

kind of input data they consume, regardless of the specific al-

gorithms used by each approach, improving as they move from

basing their computations on logs to metrics to distributed

traces. Therefore, justifying the adoption of distributed tracing

despite its overhead.

VIII. CONCLUSION

We have proposed a fault localization approach for quickly

detecting and locating microservice faults at runtime in pro-

duction environments. This approach was able to automatically

detect and accurately pinpoint the location of every simulated

fault that we injected into a well-known microservice appli-

cation benchmark, Train-Ticket. We also address the need of

causal explanations that will help in repairing a detected fault.

To do so, we relied upon application logs, which typically have

the information necessary to figuring out why a fault happened.

The problem with logs is that there might be too many of them

since every microservice is constantly generating logs. This

creates a huge haystack in which we must search and find the

few logs that will explain the cause of a specific fault. We

have used fault location and span time information to find the

needle in this haystack of logs.

In comparison with other approaches, we do not rely in

supervised learning to discover causal relations. Thus, we do

not need a training phase in which to inject faults or the

curation of any historical fault data to run our approach.

These techniques are limited by the quality and scope of

their training data as well as the generalization capabilities

of their models to unseen faults. Indeed, we have noticed a

clear deterioration in the performance of these methods when

applied over faults that were not in the training set. Also,

some of their reported performance in the literature suffered

from overfitting, since they did not clearly separate the test

and training sets. From an empirical point of view, we have

seen how our fault localization algorithm outperformed causal

graph based methods in their ability to detect and locate faults

that take down a service.

REFERENCES

[1] Gartner. (2021) Gartner says cloud will be the
centerpiece of new digital experiences. [Online]. Available:
https://www.gartner.com/en/newsroom/press-releases/2021-11-10-
gartner-says-cloud-will-be-the-centerpiece-of-new-digital-experiences

[2] S. Newman, Building Microservices. O’Reilly Media, Inc, 2021.
[3] M. Waseem, P. Liang, and M. Shahin, “A systematic mapping study on

microservices architecture in DevOps,” Journal of Systems and Software,
vol. 170, p. 110798, 2020.

[4] T. Betts. (2020) To microservices and back again – why segment went
back to a monolith. [Online]. Available: https://www.infoq.com/news/
2020/04/microservices-back-again/

[5] I. Beschastnikh, P. Wang, Y. Brun, and M. D. Ernst, “Debugging dis-
tributed systems: Challenges and options for validation and debugging,”
Queue, vol. 14, no. 2, pp. 91–110, 2016.

[6] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, W. Li, and D. Ding, “Fault
analysis and debugging of microservice systems: Industrial survey,
benchmark system, and empirical study,” IEEE Transactions on Software
Engineering, vol. 47, no. 2, pp. 243–260, 2021.

[7] B. Li, X. Peng, Q. Xiang, H. Wang, T. Xie, J. Sun, and X. Liu, “Enjoy
your observability: An industrial survey of microservice tracing and
analysis,” Empirical Software Engineering, vol. 27, no. 1, pp. 1–28,
2022.

[8] L. Wu, J. Tordsson, E. Elmroth, and O. Kao, “Causal inference tech-
niques for microservice performance diagnosis: Evaluation and guiding
recommendations,” in International Conference on Autonomic Comput-
ing and Self-Organizing Systems (ACSOS). IEEE, 2021, pp. 21–30.

[9] Y. Gan, M. Liang, S. Dev, D. Lo, and C. Delimitrou, “Sage: Practical
and scalable ML-driven performance debugging in microservices,” in
26th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, 2021, pp. 135–151.

[10] J. Lin, P. Chen, and Z. Zheng, “Microscope: Pinpoint performance issues
with causal graphs in micro-service environments,” in International
Conference on Service-Oriented Computing, 2018, pp. 3–20.

[11] D. Liu, C. He, X. Peng, F. Lin, C. Zhang, S. Gong, Z. Li, J. Ou,
and Z. Wu, “MicroHECL: High-efficient root cause localization in
large-scale microservice systems,” in 43rd International Conference on
Software Engineering: SEIP. IEEE/ACM, 2021, pp. 338–347.

[12] M. Kim, R. Sumbaly, and S. Shah, “Root cause detection in a service-
oriented architecture,” ACM SIGMETRICS Performance Evaluation Re-
view, vol. 41, no. 1, pp. 93–104, 2013.

[13] M. Jiang, M. A. Munawar, T. Reidemeister, and P. A. Ward,
“Dependency-aware fault diagnosis with metric-correlation models in
enterprise software systems,” in International Conference on Network
and Service Management. IEEE, 2010, pp. 134–141.

[14] P. Aggarwal, A. Gupta, P. Mohapatra, S. Nagar, A. Mandal, Q. Wang,
and A. Paradkar, “Localization of operational faults in cloud applications
by mining causal dependencies in logs using golden signals,” in Interna-
tional Conference on Service-Oriented Computing, 2020, pp. 137–149.

[15] L. Wu, J. Tordsson, E. Elmroth, and O. Kao, “MicroRCA: Root
cause localization of performance issues in microservices,” in Network
Operations and Management Symposium. IEEE/IFIP, 2020, pp. 1–9.

[16] M. Chen, A. X. Zheng, J. Lloyd, M. I. Jordan, and E. Brewer,
“Failure diagnosis using decision trees,” in International Conference on
Autonomic Computing, 2004. Proceedings. IEEE, 2004, pp. 36–43.

[17] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, D. Liu, Q. Xiang, and
C. He, “Latent error prediction and fault localization for microservice
applications by learning from system trace logs,” in 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2019, pp. 683–694.

[18] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal,
D. Beaver, S. Jaspan, and C. Shanbhag, “Dapper, a large-scale distributed
systems tracing infrastructure,” 2010.

[19] A. Parker, D. Spoonhower, J. Mace, B. Sigelman, and R. Isaacs,
Distributed tracing in practice: Instrumenting, analyzing, and debugging
microservices. O’Reilly Media, 2020.

498

[20] Y. Shkuro, Mastering Distributed Tracing: Analyzing performance in
microservices and complex systems. Packt Publishing Ltd, 2019.

[21] A. Khatri and V. Khatri, Mastering Service Mesh: Enhance, secure, and
observe cloud-native applications with Istio, Linkerd, and Consul. Packt
Publishing Ltd, 2020.

[22] Train-Ticket, https://github.com/FudanSELab/train-ticket.
[23] L. Sun and D. Berg, Istio Explained. O’Reilly Media, Inc., 2020.
[24] E. Kiciman and A. Fox, “Detecting application-level failures in

component-based Internet services,” IEEE transactions on neural net-
works, vol. 16, no. 5, pp. 1027–1041, 2005.

[25] C. Pham, L. Wang, B. C. Tak, S. Baset, C. Tang, Z. Kalbarczyk, and
R. K. Iyer, “Failure diagnosis for distributed systems using targeted
fault injection,” IEEE Transactions on Parallel and Distributed Systems,
vol. 28, no. 2, pp. 503–516, 2017.

[26] H. Qiu, S. S. Banerjee, S. Jha, Z. T. Kalbarczyk, and R. K. Iyer,
“FIRM: An intelligent fine-grained resource management framework for
SLO-oriented microservices,” in 14th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 20), 2020, pp. 805–825.
[27] M. Allen, R. Wolski, and J. Plank, “Adaptive timeout discovery using

the network weather service,” in 11th IEEE International Symposium on
High Performance Distributed Computing, 2002, pp. 35–41.

[28] T. Dai, J. He, X. Gu, and S. Lu, “Understanding real-world timeout
problems in cloud server systems,” in IEEE International Conference
on Cloud Engineering, 2018, pp. 1–11.

[29] P. Huang, C. Guo, J. R. Lorch, L. Zhou, and Y. Dang, “Capturing and
enhancing in situ system observability for failure detection,” in 13th
USENIX Symposium on Operating Systems Design and Implementation,
2018, pp. 1–16.

[30] S. Jha, S. Cui, S. S. Banerjee, T. Xu, J. Enos, M. Showerman, Z. T.
Kalbarczyk, and R. K. Iyer, “Live forensics for hpc systems: A case
study on distributed storage systems,” in SC20: International Conference
for High Performance Computing, Networking, Storage and Analysis.
IEEE, 2020, pp. 1–16.

499

