## iPrism: Characterize and Mitigate Risk by Quantifying Change in Escape Routes

**Shengkun Cui**, Saurabh Jha, Ziheng Chen, Zbigniew T. Kalbarczyk, Ravishankar K. Iyer

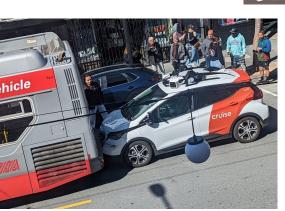




## Is Autonomous Driving Safe Enough? [2018 – 2023]

03/2018

Self-Driving Uber Car Kills Pedestrian in Arizona, Where Robots Roam




## Apple Engineer Killed in Tesla Crash HauPreviously Complained About Autopilot

By Tom Krisher and Olga Rodriguez The Associated Press Feb 11, 2020 Save Article

#### Cruise Stops All Driverless Taxi Operations in the United States

The move comes just two days after California regulators told the company to take its autonomously driven cars off the road.







## Is Autonomous Driving Safe Enough? [DSN 2018]

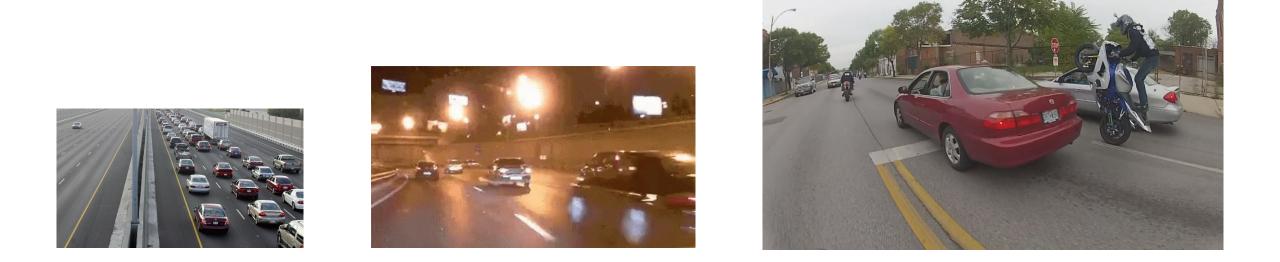
| Manufacturer        | Raw Disengagement Report (Log)                                                                                                                          | Category            | Tags                           |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------|
| Nissan              | 1/4/16 — 1:25 PM — <b>Software module froze</b> . As a result driver safely disengaged and resumed manual control. — City and highway — Sunny/Dry       | System              | Software                       |
| Nissan              | 5/25/16 - 11:20 AM — Leaf #1 (Alfa) — The AV <b>didn't see</b> the lead vehicle, driver safely disengaged and resumed manual control.                   | ML/Design           | Recognition System             |
| Waymo<br>Volkswagen | May-16 — Highway — Safe Operation — Disengage for a <b>recklessly behaving</b> road user 11/12/14 — 18:24:03 — Takeover-Request — <b>watchdog error</b> | ML/Design<br>System | Environment<br>Computer System |

SAMPLE OF DISENGAGEMENT REPORTS FROM THE CA DMV DATASET.

We use the "-" to denote field separators.

Note that log formats vary across manufacturers and time.

Bold-face text represents phrases analyzed by the NLP engine to categorize log lines.




### How Do We Make Autonomous Driving Safer?

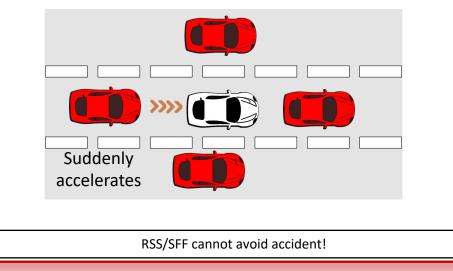


# Why rear car choose to brake?

### How Do We Make Autonomous Driving Safer?



## Attention required increases with the increase in uncertainty of another actor's behavior

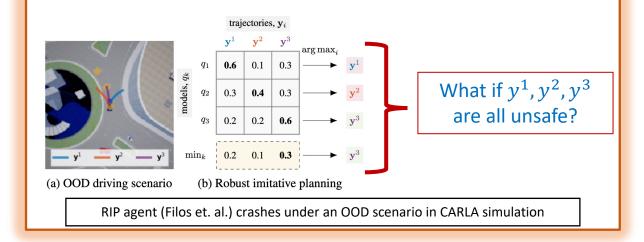

## **Ensuring Safety – Traditional Methods**

#### By avoiding collision trajectories

- Time to collision
- Intel Responsibility Sensitive Safety (RSS)
- Nvidia Safety Force Field (SFF)

#### Does not proactively assess risks

- Predicted collision trajectories can be inaccurate
- Often too late to avoid accident




#### By learning from data

- Reinforcement learning
- Imitation learning
- Adaptation to out-of-training-distribution

#### Depends on training data quality

- Data inefficiency: require large amount of training data
- Cannot handle rare driving scenarios



## Handle Uncertainty via Safe Back-up Plans

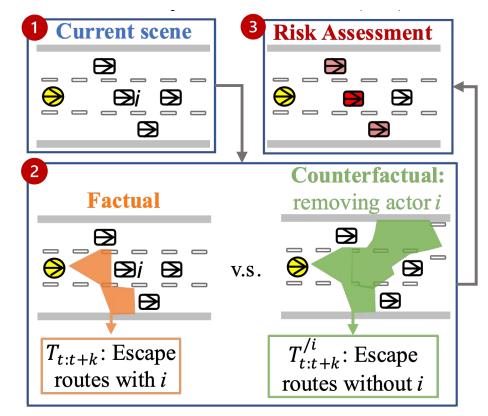
#### Uncertainties always exist in practice!

- Sensor/SW/HW faults and failures
- Less robust ML model prediction in out-of-training-distribution scenarios
- Unpredictable Behavior of other actors

#### • What can we do then?

- Ensuring enough back-plans (aka escape routes)
- Maximizing the chance of having safe routing choices (in uncertain environment)

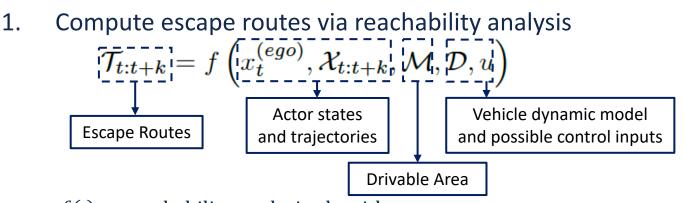
## AD Safety & Risk Assessment


#### **Human intuitions**

- Actively ensure "backup plans" (aka "escape routes")
- 2. Handle uncertainty and zero-day scenarios

#### **Research Question 1:**

How do we design a risk metric that embeds these intuitions?


#### Analytical, no learning needed!

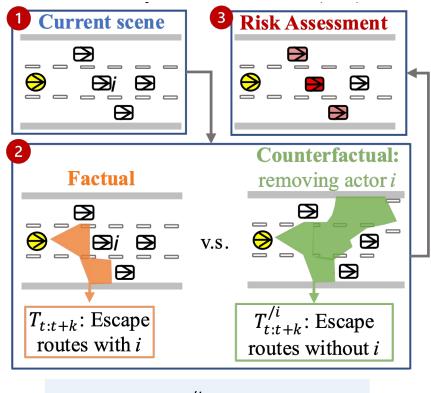


 $STI_i \propto |T_{t:t+k}^{/i}| - |T_{t:t+k}|$ 

Motivated from Barlow & Proschan work [1975]

## **Risk Assessment in Practice**



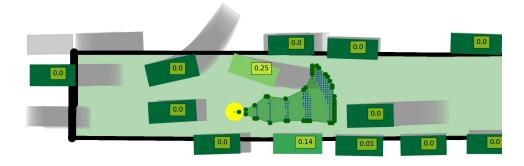

 $f(\cdot)$ : a reachability analysis algorithm

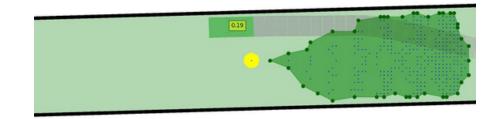
2. Compute reach-tube with actor removal (counterfactual)

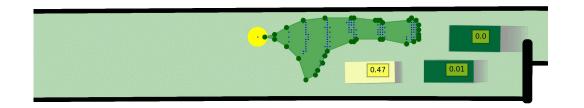
$$\mathcal{T}_{t:t+k}^{/i} = f\left(x_t^{(ego)}, \mathcal{X}_{t:t+k}^{/i}, \mathcal{M}, \mathcal{D}, u\right)$$
$$\mathcal{T}_{t:t+k}^{\varnothing} = f\left(x_t^{(ego)}, \mathcal{X}_{t:t+k} = \varnothing, \mathcal{M}, \mathcal{D}, u\right)$$

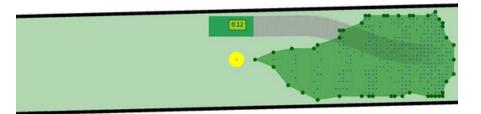
3. Compute STI (risk) value

$$STI_t^{(i)} = \frac{|\mathcal{T}_{t:t+k}^{/i}| - |\mathcal{T}_{t:t+k}|}{|\mathcal{T}_{t:t+k}^{\varnothing}|} \qquad STI_t^{(combined)} = \frac{|\mathcal{T}_{t:t+k}^{\varnothing}| - |\mathcal{T}_{t:t+k}|}{|\mathcal{T}_{t:t+k}^{\varnothing}|}$$

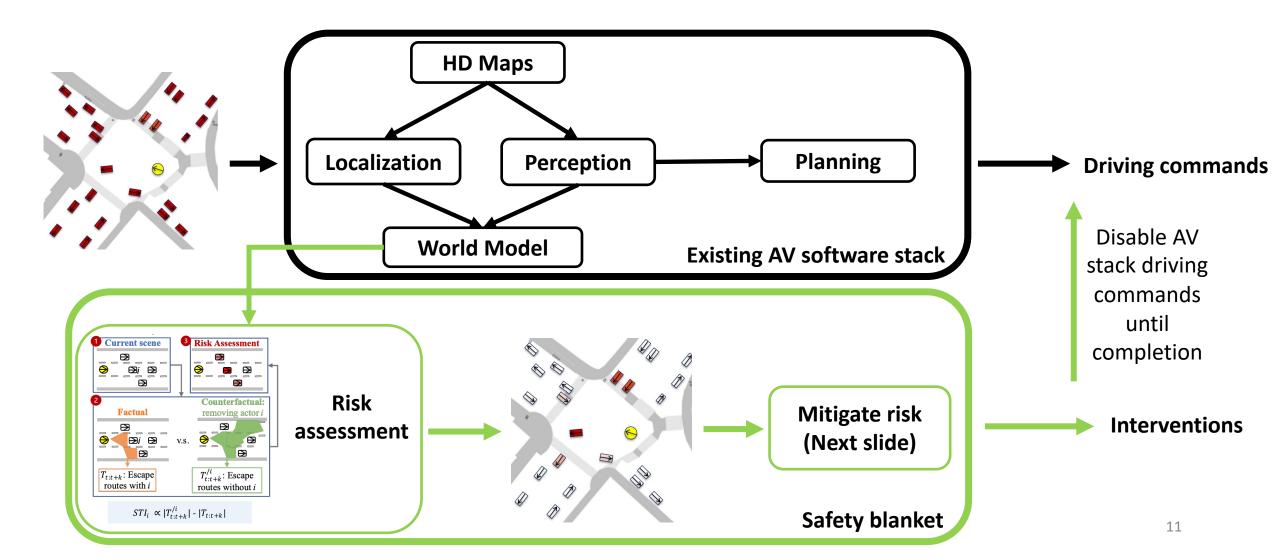




$$STI_i \propto |T_{t:t+k}^{/i}| - |T_{t:t+k}|$$


## **Demonstration of Risk Assessment**


Argoverse (Chang et al. 2019) Real-world Dataset

**CARLA Simulator with High-risk OOD Scenarios** 



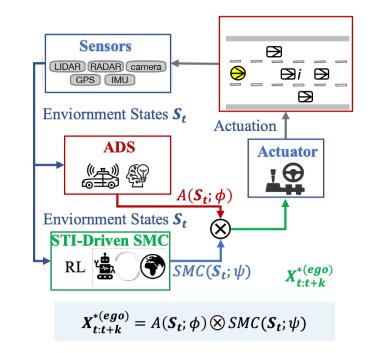







## **Risk Metric Application: Risk-aware Safety Blanket**



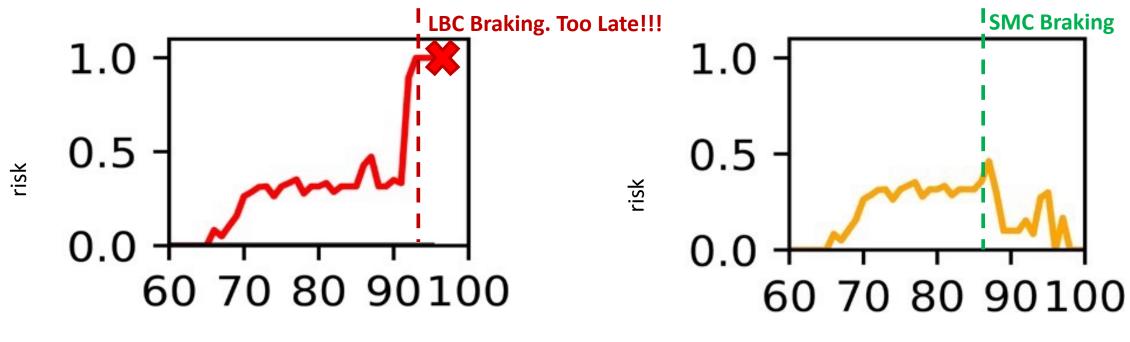

## **Risk-driven Mitigation with RL**

#### **Risk (STI) reduction via mitigation**

- 1. Safety-hazard mitigation controller (SMC) acts (policy) to reduce the STI
- 2. Learn mitigation policy via RL
- 3. STI is part of the reward during training

#### **Research Question 2:**

How do we use the risk metric to provide mitigation actions?

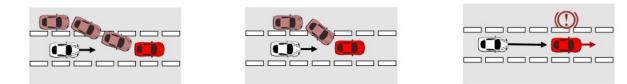



**S**<sub>t</sub>: Sensor data (e.g., camera frames)

 $a_t$ : Mitigation action (e.g., braking, changing lane)

R: STI-driven reward model (e.g.,  $r_t = \alpha_0(1 - STI) + \alpha_1$ GoalCompletionTerms)

## **Proactive Reduce Risk for Mitigating Accidents**




Baseline (LBC agent by Chen et al. 2020)

**Ours (LBC agent + STI-based SMC)** 

#### Proactively avoids trajectories of no return by reducing risk!

## Results



| Agent      | Ghost cut-in | Lead cut-in | Lead slowdown |
|------------|--------------|-------------|---------------|
| LBC + Ours | 267          | 3           | 15            |
| LBC        | 519          | 170         | 118           |

| Agent      | Ghost cut-in | Lead cut-in | Lead slowdown |
|------------|--------------|-------------|---------------|
| RIP + Ours | 65           | 265         | 129           |
| RIP        | 478          | 671         | 440           |

# collisions in 1000 scenarios per typology (lower is better)

#### **Significant reduction in accidents**

## **Conclusion and Future Work**

#### Conclusion

• Defining risk metric that captures escape routes and use it for remediation

#### Future work

- How to apply such techniques in cloud resilience?
  - Risk assessment, Root cause analysis, Remediation
- How can modern BN + LLMs (trained on TBs of data) help?
  - Identify key system events in risk state from system logs and metric data?
  - Auto-correlates failure events that ultimately lead to SWO?
  - Remediation action recommendation and activation?