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Abstract—In this work, we share our experience of using
recently proposed fault localization techniques based on interven-
tional causal learning applied in the context of cloud-native appli-
cations. We identify several assumptions that prevent successful
deployment of interventional causal learning fault localization
in the real-world. These assumptions directly contradict the
established knowledge-base of the current causality-driven work
in this domain. Based on those insights, we make the following
contributions: (i) development of minimal benchmark application,
CausalBench, that surfaces these challenges, and (ii) adapting the
interventional causal learning technique using system insights to
address these challenges. Our fault localization work outperforms
the recent state-of-the-art algorithms.

I. INTRODUCTION

Ensuring high availability and reliability of a modern cloud
application is challenging. These applications are composed
of hundreds to thousands of microservices packaged and
executed on different containers that are dynamically created
and destroyed based on the incoming load [1], [2]. Each
transaction may involve several microservices, and the size
of their call graphs follows a heavy-tail distribution. For
example, according to a recent study [1] by a major cloud
provider, 10% of the call graphs consist of more than 40
microservices. Failure in any of these microservices, if not
handled, will lead to transaction failures, resulting in decreased
availability. Therefore, it is critically important to identify the
faulty microservice (i.e., localize the fault) for timely mitigation.

Distributed tracing helps to localize a particular class of
faults by tracking a request as it traverses the application [3],
[4]. Yet, many cloud applications still lack support for tracing,
and tracing itself does not encompass all fault types. For
example, omission faults —faults resulting in a software process
or channel failing to perform an expected action —requires
costly manual inspection and visualization [5] for debugging.
Given these limitations, there is substantial ongoing research
to localize faults using data-driven and intervention-based
causal techniques. Data-driven techniques that only rely on
observational and historical data fail to identify and localize
unseen faults and are susceptible to external factors such
as load and environment [6]–[13]. Most causal techniques
rely on domain knowledge, such as topology, to localize
faults [14]–[16]. However, obtaining topology information may
not be trivial for large applications. Moreover, an application’s
business logic may enforce other kinds of causal relations
that may not be captured via topology (refer to §III). There
has been limited success in identifying causal relations from
observational and historical data only [17], [18]. Given these
limitations, there is a growing interest in the intervention (i.e.,
fault injection [12], [19]–[21])-based causal learning as they
not only alleviate the shortcomings of other approaches but also
are interpretable [12], [14], [22]. The theory of interventional
causal learning allows one to inject a minimal number of faults
to learn causal relations. The identified causal relations are then
used for localizing faults. Such interventional causal learning-

driven fault localization is guaranteed to converge under some
assumptions [23], [24]. In this paper, we highlight the practical
challenges in adopting interventional causal learning for fault
localization. Specifically, we identify assumptions that get
violated in practice due to significant gap in mapping causal
learning to the problem of fault localization and proposes a
methodology to address those challenges.

This paper addresses the problem of fault localization and
make the following contributions:
(a) Based on our experience with interventional causal tech-

niques; we identify limiting assumptions which may lead
to significant degradation in fault localization accuracy.

(b) We created a micro benchmark application called Causal-
Bench that is specifically architected to surface adverse
effects of those assumptions in real-world applications.

(c) We proposed a methodology that addresses the above-
mentioned assumptions to improve fault localization
accuracy.

(d) We evaluated our fault localization technique on Causal-
Bench as well as Robot-shop application by forcefully
injecting faults into a microservice under different load
conditions. Our proposed methodology significantly out-
performed other techniques [23], [24], and achieved an
accuracy of 1.0 and 0.84, and informativeness (refer to
§VI-A for definition) of 0.82 and 0.8, for CausalBench
and Robot-shop applications, respectively.

II. BACKGROUND

A. Problem Addressed — Fault localization
In this paper, we focus on the problem of fault localization

[7], [8], [13], [15], [25]–[29], which in the context of a
cloud-native application boils down to identifying the faulty
microservice. This is an important problem because a fault in
a microservice may lead to the failure of application requests
directed towards this faulty microservice. Moreover a fault
in one microservice can cause errors in other microservices
effectively leading to stalling or complete failure of the
application. Therefore, quickly localizing the failure is critical.

A popular approach is to learn fault propagation patterns to
develop faults fingerprints and use them to identify the fault and
its location. Fault propagation depends on the causal relations
in the application, i.e., code written by the developers. Learning
these relations requires both static and dynamic analysis of
the code; however, observability tools in Cloud do not have
access to the code and even when the code is available, doing
such analysis is difficult due to large heterogeneity in use of
programming languages, runtimes, and third party services
(such as databases and message broker systems among others).
Thus, it is important to learn as many of these causal relations
as accurately as possible using automated learning techniques
to localize faults efficiently and correctly in production.

In this work, we use interventions to learn the causal
relations [30]–[32]. The key insight is that interventions in the
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form of fault injections will change the behaviour of the targeted
microservice, and hence, any dependent microservece will also
be affected. These effects can be measured by the change
in distribution of observed metrics, which under a controlled
userflow allow us to identify causal relations. In contrast, non-
interventional approaches rely on observed historical data in
which the fault that was in the application at the moment
the data was collected is typically unknown, making it very
challenging to infer causal relations from this kind of data.
See [30] for a more theoretical understanding.

B. Fault model.
In this paper, we consider HTTP faults. These faults can be

caused by code bugs in the microservice, performance issues, or
infrastructure failures (e.g., pod network failure). Furthermore,
we assume that the faults are active for a sufficiently long time
such that the observations collected are statistically meaningful.

III. CHALLENGES

Fault propagation depends on the node on which the fault
occurs, the type of fault, and the application logic (including its
topology). These causal relations can only be learnt by using
monitoring data such as logs, metrics and traces and comparing
them in the presence and absence of the fault. Interventional
causal learning techniques leverage fault injection to learn
causal relations. However, we find that these techniques may
not work in practice because of the following assumptions1.

A. Fault Propagation Graphs Are Metric Invariant
Most works assume that the error propagation graph depends

solely on application logic (expressed as code). However, we
assert that the types of observed metrics is equally important
in identifying the correct causal graph.

To illustrate this assumption, we define two different com-
munication patterns as shown in Fig. 1 , the black edges show
the caller-callee relation while red edges show the estimated
causal influence based on the observed metric. In pattern 1, all
services are stateless. For the sake of illustration, we encode
the following business logic: every time node A is called, it
invokes a request to B, which in turn invokes a request to C.
In pattern 2, all services except D are stateless. For illustration,
we encode the following application logic: every time node
H is called, it increments the counter value by one stored in
D; F continuously monitors the counter value stored in D and
it decrements the counter value by one and calls node G. In
other words, in a normal application execution, whenever H is
called, G is also called indirectly via D and F.

Now consider two metrics when analyzing the error propa-
gation (i) count of error logs, and (ii) count of API requests
received by each microservice. Assuming that errors always
propagate, it is not hard to see that whenever fault (e.g.,
service unavailable fault) is injected in node B, error logs
are generated in node A and number of requests forwarded
to node C decreases. Similarly, when fault is injected in node
D, error logs are generated in node H and number of requests
generated in G decreases (omission fault [33]). Thus, the causal
relations used to estimate error propgation graphs also depends
on the observed metrics. When considered in isolation these
metrics may estimate causal graphs that are not consistent with
one another.

1In this section, we deliberately exclude references to specific studies to
focus attention on the underlying assumption rather than pinpointing issues in
existing research.
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Figure 1: Causal relations depend on observed metrics & code.

B. Metric Sufficiency
To avoid the assumption of metric invariance, a learning

technique may limit itself to using a single dataset modality
or consider the joint distribution over all modalities. However,
neither approach may be ideal. Different data modalities reveal
different error propagation paths. For example, in Fig. 1, we
discovered that #logs could only identify the response path
(i.e., the reverse of the request path), whereas #request counts
enabled us to detect omission faults. Furthermore, these metrics,
as well as the algorithms used to identify causal paths, are
not robust. For instance, in the aforementioned example, we
assumed that errors always propagate in the direction of the
response path. However, a developer might catch exceptions (or
errors) and handle them without generating any error logs, or
in some cases, a developer might choose not to write error logs
at all; this means that the influence of a fault (or intervention)
would not be observable using the count of console error
logs metric, even though a causal path exists in reality. Such
scenarios underscore the need for employing multiple metrics.

To avoid the pitfalls of relying on a single metric, one might
consider a joint distribution over all metrics (data modalities).
However, this approach may diminish the distinctiveness (i.e.,
identifiability) of the error propagation graph under a fault.
For instance, when analyzing the joint distribution over #logs
and #requests, an intervention on node B would indicate
both node A and node C as causally dependent. Similarly,
an intervention on node C would show both node B and
node A as causally dependent, and an intervention on node A
would show both node B and node C as causally dependent.
Hence, failure on node B and node C as characterized by
the error propagation graph (in terms of causal relations) are
indistinguishable because observed data at runtime will show
errors on all three nodes, i.e., A, B and, C irrespective of where
the fault is injected. In the first case, node B in addition to
node A and node C because node B has the fault and errors
propagate to node A and node C. In the second case, node
C in addition to node A ad node B because node C has the
fault and errors propagate to node A and node B. Note that
fault propagation graph in practice may still contain enough
information to distinguish one fault from another but the causal
framework as outlined here will not. Thus, one needs to be
careful in making assumptions and applying a causal framework
to ensure distinguishability of error propagation graphs.

rendering these faults (naturally occurring interventions)
indistinguishable at runtime. Such indistinguishability can
be circumvented by either conditioning on the nodes (e.g.,
maintaining a constant load on node C when injecting a fault on
node B, as expressed through models such as do-calculus [18])
or by monitoring metrics and their corresponding causal graphs.
However, conditioning on the nodes makes the intervention
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Figure 2: Confounder is intervention dependent.

mechanism more complex, and as a result, very few studies
have addressed the combined issue of intervention and causality
in the dependability literature [19].

C. Intervention does not change the load distribution
It is important to learn fault propagation graphs that are

load invariant; i.e., nature of the load in terms of distribution
of number and type of requests to avoid false positives when
identifying/localizing the fault. In the literature on causality,
it is well known that confounders can significantly disrupt the
causal graph learning algorithm leading to spurious or incorrect
edges [18]. A common example of such a confounder is the
load on the application both in terms of the number of requests
and the path taken by these requests. It is natural to make
the simplifying assumption that the distribution of load (e.g.,
user requests and their paths) do not change significantly over
a time window. However, in our experience, we have found
that this assumption generally does not hold true in practice.
Occurrence of fault (forced or natural) may change the load
distribution, i.e., the intervention changes the distribution of
the confounders.

For example, consider the following application topology
graph shown in Fig. 2. Here, we encode the following business
logic: user sends a request to node A. User can send two
different types of request, one which invokes node B and
another that invokes node I. Node B invokes node C or node
E depending on the type of API request, and node C always
invokes node E.

The steady state distribution of #requests per microservice
may change depending on queuing effects. For example, if
node C fails, the queue of requests on node A containing calls
to C will be processed faster (because requests will return
immediately). This in turn will forward more requests per
second (or reduce the observed end-to-end latency of requests)
to node I as seen in the boxplot in Fig. 2 despite fixing the
load externally. Thus, one can conclude that node I is causally
related to node C which is factually correct given the load
pattern. However, if node I fails, the queue of requests on
node A containing calls to I will be processed faster (because
requests will return immediately). This in turn will forward
more requests to node C despite fixing the load externally.
Thus, because of the load as confounder the causal relations
are not consistent across fault. Similarly, if one considers a
different load pattern, one in which node A does not call node
I, there will be no causal dependency between node C and
node I. Hence, not modeling load (a confounder) can lead to
spurious causal edges/graphs which in turn will lead to reduce
in accuracy of the fault localization model.

IV. DESIGN OVERVIEW AND METHODOLOGY

We adopt the following design principles for the broader
applicability.

1) The methodology must be independent of the application
architecture, runtime, and technology.

2) We assume no code access.
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Figure 3: Design overview

3) We assume access to only monitor black-box metrics
associated with a microservice, e.g., console logs and
metrics such as CPU utilization.

Fig. 3 shows the overall design and implementation of our
methodology. Our methodology has four important components:
(i) fault injector (ii) data collector (iii) interventional causal
learning, and (iv) fault localization.

A. Fault Injector and Data Collector
For fault injection and data collection we use a fault

injection platform, that has been developed and implemented
by our team [34]. Its design combines fault injection and data
collection on the same platform, and supports the automation
of use cases such as the one described in this paper. The fault
injection platform supports a variety of fault categories and
types. For the given use case we inject a "service unavailable"
fault into the microservices. This can easily be achieved by
changing the target port in the Kubernetes service configuration
to point to an inactive port on the pod.

The data collection service being part of the fault injection
platform eases the collection of monitoring data like logs,
metrics, or traces from different monitoring applications. It
hides some of the complexity of their APIs thus allowing the
automation of the data collection for the presented use case.

B. Interventional Causal Learning
We formulate here our approach for solving the problem

of discovering causal influences between microservices using
fault injections. We have an application with a finite set of
microservices S, monitored by a finite set of raw metrics M0.
We consider here the set M of derived metrics defined by
an SRE user as mathematical combinations of raw metrics.
For example, given M0 = “logs counts” and M ′0 = “requests
received” , a derived metric could be defined as M = M0�M ′0,
which would measure the “average number of logs per request”
in a microservice and time period. The idea behind considering
these derived metrics is that they should be able to deconfound
causal influences. In general, the set M may have raw and/or
derived metrics.

Each metric M ∈ M collects measurements m(s, t) from
each microservice s ∈ S at successive, typically equally spaced,
points in time t ∈ T . We run controlled experiments in which
a fault is injected in a microservice for a period of time. Let Ts
be the set of time points t ∈ T during which an injected fault is
held in microservice s ∈ S; and T0 the set of time points t ∈ T
with no injected fault in the application. Thus, T = ∪s∈STs∪T0.
The time series data collected for metric M ∈ M under a
fault injection in s ∈ S is Ds(M, s′) = {m(s′, t),∀t ∈ Ts},
for every microservice s′ ∈ S where metric M makes sense.
Similarly, D0(M, s′) = {m(s′, t),∀t ∈ T0} represents the time
series data with no injected fault.
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We want to understand how an issue in some microservice s
causes anomalies in other microservices s′ ∈ S, measured by
same metric M ∈M. For us, an anomaly in microservice s′

occurs if its distribution of values for metric M shifts, and this
change cannot be explained by changes in other microservices’
metrics. We use interventional causal learning to estimate
C(s,M) the set of microservices s′ ∈ S that are causally
influenced under metric M by an intervention, in the form
of a fault injection, in microservice s. We know that if we
observe that for every metric M ∈M the time series datasets
Ds(M, s′) and D0(M, s′) are equally distributed, meaning that
no anomaly is detected by any metric in s′, then microservice
s′ cannot be causally influenced by an issue in s (at least under
our observability viewpoint). However, in general, we cannot
conclude that an observed distribution shift in any of these
pairs of time series datasets will imply causal influence due to
the possible existence of confounders, as seen in §III-C.

One option to deal with confounders is to condition on
every other microservice s′′ ∈ S \{s, s′} to block their path of
causal influence. This approach, however, is computationally
expensive and may still miss latent confounders that are not
measured by our observability tools (for example, autoscaling
actions or other SRE actions not captured by our observability
tool). Also, as seen in §III-A, the use of different metrics may
lead to different conclusions in terms of causal influences and
confounding effects when conditioning. We take an alternative
approach: we just collect the raw information about what
microservices s′ ∈ S get impacted with each fault injection in
s under each different metric M ∈M, and generate the sets
C(s,M) for all s ∈ S,M ∈M. Algorithm 1 computes these
sets by judging that s′ ∈ C(s,M) when the datasets Ds(M, s′)
and D0(M, s′) are statistically not equally distributed. That is,
if the distribution of metric M values shifts when a fault is
injected in microservice s. We use the Kolmogorov–Smirnov
(KS) test to decide if the hypothesis that two observed time
series datasets are equally distributed is true or false. As we
will see empirically in §VI-A, these sets are what we need for
our fault localization heuristic proposed in §IV-C.

Algorithm 1 Fault injection-driven causal learning

1: Input: Set of microservices S
2: Input: Set of user-defined monitoring metrics M
3: Input: Lengths of T0 and Ts, for all s ∈ S
4: Collect D0(M, s′) for all M ∈M and s′ ∈ S
5: for all microservice s ∈ S do
6: Inject fault into s during time period Ts
7: Collect Ds(M, s′) for all M ∈M and s′ ∈ S
8: for all M ∈M do
9: C(s,M) = {s}

10: for all s′ ∈ S − s do
11: F̂s(x) = freq({m ≤ x : m ∈ Ds(M, s′)})
12: F̂0(x) = freq({m ≤ x : m ∈ D0(M, s′)})
13: if Fs 6= F0 then
14: C(s,M) = C(s,M) ∪ {s′}
15: Return: C(s,M), for all s ∈ S,M ∈M

C. Fault Localization
We propose the following majority voting heuristic im-

plemented by Algorithm 2 to localize faulty microservices.
Periodically, we collect during production time series data
D(M, s) for each metric M ∈ M and microservice s ∈ S.

Then, we compute for each metric in M ∈ M the set of
microservices A(M) that behave anomalously with respect
to such a metric. An anomaly in a microservice s ∈ S is
detected by comparing the empirical distributions of D(M, s)
and D0(M, s). We then emit a vote for the microservice s∗

whose set C(s∗,M) of anomalous microservices seen when
a fault was injected in microservice s is the closest to the
set A(M) of anomalous microservices observed in production
with respect to metric M . Thus, each metric M produces a
vote for a microservice, the one that seems to better explain
the observed micrpservice anomalies under such a metric. Our
heuristic then predicts the microservice with the most votes as
the most likely cause of the observed anomalies in production
for the period under consideration.

Algorithm 2 Fault localization

1: Input: Set of microservices S
2: Input: Set of user-defined monitoring metrics M
3: Input: D0(M, s) for all M ∈M and s ∈ S
4: Input: C(s,M), for all s ∈ S,M ∈M (Algorithm 1)
5: Input: D(M, s) for all M ∈M and s ∈ S
6: Initial: V(s) = 0 ∀s ∈ S
7: for all M ∈M do
8: A(M) = ∅
9: for all s ∈ S do

10: F̂0(x) = freq({m ≤ x : m ∈ D0(M, s)})
11: F̂ (x) = freq({m ≤ x : m ∈ D(M, s)})
12: if F 6= F0 then
13: A(M) = A(M) ∪ {s}
14: s∗ = arg maxs |A(M) ∩ C(M, s)|
15: V(s∗) = V(s∗) + 1
16: Return: arg maxs V(s)

V. EXPERIMENT SETUP

In this section, we describe the testbed and the benchmark
applications used to evaluate our proposed intervention-based
causal learning methodology.

A. Testbed
We created our experimental environment on a Kubernetes

cluster running in a cloud environment. We deployed two
microservice applications, CausalBench and Robot-Shop, con-
sisting of nine and twelve microservices, respectively. We
created a load-generation service using Locust [35] to generate
various application userflows to ensure that these userflows
cover all microservices. Our load-generation service, using one
replica by default, emulates ten users to maintain a request
throughput of fifty for each application userflow. The load-
generation service can be scaled arbitrarily to increase the
load by increasing the number of replicas associated with this
service.

We integrated our solution into the fault injection platform
described in §IV-A, that allows us to inject faults into an
application’s microservices without having to make any source
code changes. In our experiments, we inject one fault at
a time in each microservice covered by our userflows for
each application, and ran the userflows for ten minutes (a
configurable parameter) to get statistically meaningful data for
statistical test. After running the userflows with exactly one fault
injected in one of the microservices, we remove the fault from
the application before injecting a fault in another microservice.
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We inject “http-service-unavailable" faults using our fault
injection platform capabilities. However, our methodology is
not dependent on a specific fault type, just that faults propagate.

We monitor these microservices and collect metric
data on CPU (container_cpu_user_seconds_total) and net-
work (container_network_receive_packets_total, container_net-
work_transmit_packets_total) using cAdvisor [36] and
Prometheus [37]. We use Python Kubernetes API to directly
collect message logs from each container (which is equivalent
to executing kubectl logs on each container). Unlike previous
work [23] which filters these messages to extract only error
logs, we keep all messages since filtering error messages
requires significant domain knowledge of the application
itself. These messages are aggregated every thirty seconds
to generate ‘msg rate’ metric. All metrics are smoothed by
aggregating them using a hopping window to create overlapping
sixty second windows which are created every thirty seconds.
These telemetry datasets, including logs, are collected for each
microservice with and without any faults for ten minutes to
get the normal observational dataset and interventional dataset,
respectively.

Why not use all metrics collected by cAdvisor? cAdvisor
collects hundreds of metrics for each container executing the
microservice. However, as discussed in §III-C, these metrics
are confounded and correlated. For example, the request rate (or
received bytes) measured for a container is directly related to
(i) requests sent by other microservices, and (ii) the processing
time for each request (which can be indirectly approximated
in terms of CPU utilization) by that container. In this example,
request rate and received bytes are correlated, whereas received
bytes (or request rate) is confounded with the CPU utilization.
Thus, arbitrarily using all metrics can skew (i) the majority
voting procedure (used by algorithm 2) because of correlation
and (ii) size of the causal sets because of confounding; thereby,
making it important to carefully choose the metrics used for
causal inference-based fault localization techniques.

To address these problems, we create a set of derived metrics
from the raw metrics to eliminate correlation and confounding.
In essence, we categorize our metrics into two categories (i)
dependent metrics and (ii) independent metrics. Independent
metrics are those that are independent of the program and
controlled by external factors such as sent requests (a measure
that can be collected via service mesh such as Istio [38] or
approximated using network-level metrics such as received
bytes). Dependent metrics are those that are influenced by the
independent metrics (e.g., CPU utilization depends on number
of requests that the microservice has to process). The derived
metrics are created by dividing a dependent metric by an
independent metric for all dependent and independent metrics.
B. Benchmark Applications

Our methodology and insights draw upon extensive knowl-
edge from real-world applications. While it would be beneficial
to disclose the specifics of these applications, such information
is proprietary and confidential. Therefore, we have distilled
this knowledge into a microbenchmark named CausalBench.
We demonstrate the effectiveness of our approach using
CausalBench, as well as other open-source benchmarks, to
validate our findings and contribute to the broader research
community.

CausalBench. We developed a CausalBench benchmark
created specifically to reveal the challenges identified in §III.

Fig. 4 shows the architecture of our application. Here each
node on the graph is a microservice, and each directed edge

Figure 4: The topology graph of the CausalBench application

shows the caller-callee relation. All nodes are: (i) stateless
except for node D which is a stateful redis service; (ii)
implemented in Python; (iii) flask-based web services that
expose ports and APIs for services to communicate, except for
node F, and (iv) execute small compute tasks by generating a
random string and calculating its base64 encoding. Our causal
bench is written to support the following request flows:
(a) User calls API path_bce through a web request (i.e.,

http://A/path_bce). The path_bce API automatically gen-
erates an API request, path_ce, to node B; which in turn
automatically generates an API request, path_e, on node C;
and which in turn automatically generates an API request,
/, on node E. When logging is enabled, node E writes
an info log message (I am okay!) for every hundredth
requests.

(b) User calls API path_be through a web request (i.e.,
http://A/path_be). The path_be API automatically gen-
erates API request, path_e, on node B; which in turn
automatically generates an API request, /, on node E.

(c) User calls API path_hd through a web request (i.e.,
http://A/path_hd). The path_hd API automatically gener-
ates API request, /, on node H. In response, to this request,
node H calls D (a redis service) to increment the value
of counter called items by one.

(d) User calls API path_id through a web request (i.e.,
http://A/path_id). The path_id API automatically generates
API request, /, on node I. In response, to this request,
node I calls D (a redis service) to increment the value of
another counter called dummy by one.

(e) Node F continuously (in an infinite loop) monitors the
counter items by connecting to D. If the value of items
is greater than one, F decrements the counter by one and
each time it decrements the value by one it calls the API,
/, on node G. F also writes a log to the console whenever
it has finished processing hundred items and a log when
there are no items to process for more than 30 seconds.

Robot-shop. Robot-shop [39] is an open-sourced microser-
vices application of a simple e-commerce storefront. The
whole application is built using 13 microservices, written on
several programming languages and runtime frameworks such
as AngularJS, NodeJS, Nginx, Java, Python, Golang, MongoDb,
RabbitMQ, Redis, MySQL.

VI. RESULTS

Here we evaluate the results of fault localization. We use
algorithm 1 to train our model on the metric data collected
with load of 1×. We evaluate the efficacy of the model on load
of 1× and 4×. Note that we conducted separate experiments
to collect train and test datasets for load = 1×. Most recent
work [23], [24] do not evaluate the model efficacy across
different load distributions.

A. Fault Localization Efficacy
In order to assess the efficacy of our algorithm in finding

the correct fault locations, we measure for each condition
both the accuracy (the percentage of injected faults that are
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correctly localized by our algorithm’s output, i.e., an estimated
set of candidate root causes) and informativeness (the ratio
of microservices excluded by the estimated fault location set,
measured as (n − x)/(n − 1), where n is the total number
of microservices under consideration, and x is the size of the
estimated fault location set). Thus, the more exclusions in the
set, the more informative the estimated set is: a value of 1.0
indicates the prediction consists of only one location, and a
value of 0 indicates the estimated set is as large as the total
number of candidate locations.

Table I shows these results for various load configurations
for CausalBench and Robot-shop. Our results show that the
methodology produces accurate results, achieving an accuracy
of one, when the distribution of the load is similar for training
and test dataset (obtained during deployment). However, the
accuracy does degrade when scaling the load by 4×. This
degradation hints that our heuristics for removing correlation
and confounding were not perfect.

Table I: Fault localization accuracy and informativeness
Load Accuracy Informativenss

CausalBench 1× 1.00 0.82
4× 0.84 0.80

Robot-shop 1× 1.00 0.80
4× 0.81 0.88

B. Metrics Role in Addressing Fault Localization Challenges

We evaluate the effectiveness of intervention-based causal
learning algorithms as is without addressing the challenges
identified in §III. Table II shows how the informativeness
decreases when we only use (i) one metric type such as error
log rate (as was done in [23])2 and (ii) raw metrics or derived
metrics. Recall from §V, derived metrics are heuristic-driven
metrics used for removing the effects of confounding and
correlation among metrics themselves. The results indeed show
the following real-world aspects and challenges of using causal
learning using metrics: (i) one metric alone is not sufficient for
fault localization and (ii) correlation and confounding among
metrics can significantly degrade the efficacy of the causal
learning techniques.

Table II: Informativeness (i) when using one or all metrics
and (ii) when accounting for the confounders by use of derived
metrics. Test dataset was obtained with load = 4× and model
training was done using load = 1×.

Raw Metrics Derived Metrics
msg rate cpu all msg rate cpu all

CausalBench 0.54 0.60 0.73 0.62 0.70 0.80
Robot-shop 0.58 0.51 0.66 0.60 0.64 0.88

Finally, we show an example of how the causal sets (and
the causal world) are different for different metrics. Thus, a
methodology that tries to learn a single causal world (or graph
or sets) using intervention learning will not succeed in mining
the true causal graph. For example, Ψ-FCI algorithm [40],
which is used for learning the underlying causal graph using
interventional data, assumes that there is a single causal graph
that enforces the relation among the nodes in the graph which
is not the case as shown in the following example.

2In [23], the dataset consists of only error log rate whereas in our case we
consider message rate which consists of both error and info log messages.

(a) Causal set extracted using msg rate when intervened on
node B of CausalBench includes B,A,E. E is included
because injecting fault on B stops all requests to node E
which in turns prevents node E to write the I am okay!
info message (an omission fault).

(b) Causal set extracted using CPU utilization when intervened
on node B of CausalBench includes B,C,E

Note that the previously proposed causal intervention-based
approach [23] only uses error rate, and hence, achieves much
lower informativeness score as shown in Table II.

VII. RELATED WORK

Fault propagation is a well studied topic in the dependability
community. Previous work has mostly focused on learning
fault propagation patterns using observational (and historical
datasets) [6]–[9] or via fault injection-driven techniques [12],
[19]–[21]. Observational models are limited to localizing faults
that have already occurred as they rely on historical data
to recognize fault patterns and, therefore, fail to identify
novel faults. Fault injection-based techniques [12], [19]–[21]
do overcome some of these limitations. However, existing
techniques have mostly focused on directly learning the relation
between the monitored data (e.g., logs, metrics and traces) to
faults with limited understanding of causal relations and fault
propagation. Techniques that do focus on extracting the causal
patterns [12] and using those for fault localization do not
consider confounding effects, and thus, fail to learn the true
causal relation, resulting in significant degradation of accuracy.

Recent work [14], [23], [24] combines the theory of
intervention-based causal learning with fault injection to limit
the adverse effects of internal and external confounding in
learning the true causal graphs. In [23] only an error rate
metric is used to identify the causal graph and to localize
faults. The use of error logs is problematic because errors
(and exceptions) can be handled and their logging depends on
software practices and on the software developer. Moreover,
there is the assumption that errors only propagate in the
backward direction of the call-graph, which may not always be
true as is the case with omission faults. Also, correlation is used
to identify causal edges that assumes that error logs are linearly
related which again may not be true in practice. In [24], authors
use multiple metrics to identify causal dependence overcoming
the shortcomings of the [23]. However, that resulted in the
challenges discussed in §III. Finally, [14] relies on an expert to
define the causal structure used for fault localization. However,
a main issue is that such causal structure is generally not known
in advance. Application topology obtained from service meshes
can substitute (or help gain) for this information but as we
discuss in §III the causal structure may not always align with
the structure of the application topology graph.

VIII. CONCLUSION

We have conveyed insights gained from our experience doing
fault localization in real-world applications and encapsulate
this knowledge within a microbenchmark named CausalBench.
This tool is designed to aid the research community in refining
and enhancing fault localization methods.

While we present a fault localization methodology that
outperforms existing techniques in terms of fault localization
accuracy and informativeness. Our work is just an attempt to
demonstrate that straightforward techniques can significantly
enhance fault localization accuracy. It is clear that further
research is necessary to continue improving the performance
of these algorithms.
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