
Characterizing Modern GPU Resilience and Impact
in HPC Systems: A Case Study of A100 GPUs

Shengkun Cui†*, Archit Patke†*, Ziheng Chen†*, Aditya Ranjan†*, Hung Nguyen†, Phuong Cao†,
Brett Bode†, Gregory Bauer†, Saurabh Jha¶, Chandra Narayanaswami¶, Daby Sow¶,

Catello Di Martino§, Zbigniew T. Kalbarczyk†, and Ravishankar K. Iyer†
†University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

§Nokia Bell Labs, Sao Paulo, Brazil
¶IBM Research, Yorktown Heights, NY 10598, USA

Abstract—In this study, we characterize GPU failures in Delta1,
the current large-scale AI system with over 1300 petaflops of peak
compute throughput. Using three years of GPU error-recovery
data (12.5M GPU hours), this study evaluates the resilience of
NVIDIA A100’s GPU hardware components to determine the
vulnerability of different GPU components to failure and their
impact on the GPU-node availability and on user jobs. Our
key findings include: (i) A100 GPU node resilience in MTBE
reduced slightly (23%) in the operational period compared to
the pre-operational period due to more frequent GPU hardware
errors primarily caused by higher GPU utilization. (ii) Contrary
to common beliefs, GPU memory is 160× more reliable than GPU
hardware in terms of MTBE (mean time between errors). (iii)
The newly introduced GSP (GPU System Processor) is the most
vulnerable GPU hardware component. (iv) NVLink errors did
not always lead to user job failure, and we attribute it partly to
the underlying error detection and retry mechanisms employed.
(v) Hardware errors and insufficient recovery mechanisms cause
frequent job failures and limit overall GPU node availability to
99.5% (7 minutes downtime per day), indicating the infrastruc-
ture is not yet ready for system-scale, long-running user jobs.

Keywords—Large-scale AI/HPC System; Reliability Evaluation
and Analysis; GPU Resilience; Application Impacts.

I. INTRODUCTION

This paper presents the results of a resilience study of Delta
HPC, a large-scale GPU system consisting of 1,456 total mod-
ern NVIDIA GPUs. Specifically, we focus on characterizing
the resilience of Delta’s A100 GPU nodes via three years of
critical GPU error data, representing a total of 12.5 million
GPU hours. In particular, we assess (a) the resilience of GPU
hardware and memory components in the pre-operational and
operational periods to identify the vulnerability of various
GPU components to errors and their impact on GPU node
availability and (b) the impact of GPU errors on user jobs.
Our findings include:

(i) The per node MTBE (mean time between errors) of
Delta’s A100 nodes saw a 23% degradation in the operational
period compared to the pre-operational period, from 199 hours
to 154 hours. We attributed this to increased GPU utilization in
the operational period, which resulted in more frequent GPU
hardware-related errors (e.g., GSP and PMU errors).

*These authors contributed equally.
1Delta is an NCSA-operated HPC system at the University of Illinois

Urbana-Champaign.

(ii) A100’s GPU memory is 160× more resilient than
GPU hardware, measured by per node MTBE. GSP (GPU
System Processor), introduced to enhance performance by
offloading CPU side driver workloads to Ampere GPUs, is the
most vulnerable GPU hardware component due to its limited
detection and recovery capabilities. GSP errors in A100s were
highly impactful, with 100% of GSP errors leading to user job
failures, A GSP error requires a node reboot. Further analysis
shows that GSP error MTBE is 5.6× worst in the operational
period than in the pre-operational period likely due to higher
GPU utilization.

(iii) Communication errors with PMU (Power Management
Unit), although not explicitly described in NVIDIA developer
manual [1], can lead to issues such as the inability to change
the GPU core clock frequency and memory clock frequency.
Propagation of such errors can cause MMU (Memory Man-
agement Unit) errors, which then lead to user job failures 96%
of the time.

(iv) NVLink (GPU-to-GPU communication fabric within a
multi-GPU node) errors occur with a system-wide MTBE of
11 hours. An NVLink error results in job failure approximately
54% of the time. Conversely, about 46% of jobs experiencing
NVLink errors are able to complete successfully. We attribute
this to error detection mechanisms such as CRC (cyclic
redundancy check) that detect errors and trigger message
retransmission.

(v) In A100 GPUs, memory error-recovery mechanisms like
memory row remapping and error containment reduce the
impact of uncorrectable memory errors on user jobs while
maintaining node availability. Our analysis shows that these
mechanisms mitigate the impact of an uncorrectable memory
error such as a DBE 100% of time in the operational period,
and no row remapping failure (RRF) was observed. However,
failure in error containment can result in bursty and persistent
memory errors (e.g., we encountered a case of an uncontained
memory error that persisted for 17 days during the pre-
operational period from one faulty A100 GPU, presenting a
resilience challenge.

(vi) Hardware errors and lack of robust recovery in hard-
ware lead to job failures. Except for MMU and NVLink
errors, none of the other hardware errors can be handled
by application-level mechanisms. Hence, the reliability of the

1

underlying GPU hardware needs to be improved, as relying
on application-based recovery strategies is not feasible.

(vii) The overall availability per GPU node is 99.5%, which
corresponds to a downtime of 7 minutes per day. Such a large
downtime indicates that the infrastructure is not ready yet to
meet the demands of critical user jobs that need to provide
uninterrupted service.

II. BACKGROUND

This section provides information on (i) Delta specification,
(ii) critical GPU error categories and error recovery mecha-
nisms used in this study.

A. Delta Specifications

Delta is an AI system equipped with 132 CPU-only nodes
and 358 GPU-accelerated nodes, designed to run diverse sci-
entific research, HPC, and machine learning (ML) workloads.

Delta’s CPU-only nodes are equipped with two 64-core
AMD EPYC Milan CPUs. Out of the 358 GPU-accelerated
nodes, 106 of them are A100 GPU nodes which are the
subject of this study. The A100 GPU nodes are equipped
with one 64-core AMD EPYC Milan CPU and 4-way (100
nodes) or 8-way (6 nodes) A100 GPUs; each GPU has 40 GB
of HBM2e memory. Moreover, Delta is equipped with HPE
Cray Slingshot 11 network that offers 400Gbps+ connectivity
bandwidth between nodes, and Lustre file system for storage.

B. NVIDIA GPU Error Categories & Recovery Mechanisms

NVIDIA GPU errors are logged as XID errors. We focus
on those XID errors that are identified as high-impact based
on descriptions from NVIDIA’s Developer Manuals [1], [2],
discussions in NVIDIA Developer Forums and Blogs, and
input from Delta site reliability engineers (SREs), and collect
their corresponding recovery events. Section §IV, Table I
presents detail list of selected XID errors/events and their cor-
responding recovery action specified by [1]. Table I categorizes
the selected GPU errors into (i) GPU hardware, (ii) NVLink
interconnect, and (iii) GPU memory. It is important to note
that we exclude GPU Software Errors (XID 13) and Reset
Channel Verification Errors (XID 43) from our analysis despite
significant numbers because they are typically triggered by
user jobs and are not indicators of degraded GPU health [1].

GPU Hardware Errors and Recovery. The critical GPU
hardware errors we studied include MMU2 errors, GPU Fallen
Off the Bus errors, GSP3 RPC timeout errors, and PMU4

communication errors. For most of these GPU hardware errors,
manual GPU reset is required [1]. As such, Delta SREs set up
node health checks to proactively monitor these errors and
alert the SREs upon error discovery to minimize potential
node downtime. Information on failure-recovery mechanisms

2Memory management unit provide memory I/O functionalities [1].
3GPU system processor (GSP) is a co-processor on-board that offloads

driver tasks from CPU [1].
4PMU regulates the frequency, voltage, and power of the GPU based on

various factors such as temperature and power cap, also referred to as the
“Performance Monitoring Unit” by NVIDIA [1].

of non-memory GPU hardware such as GSP, MMU, and PMU
is limited and not publicly available.

NVLink Interconnect Errors. Errors in NVLink inter-
GPU communication disrupt inter-GPU data transfer, reducing
computational performance, instability, and user job failures.
These errors are the result of defective NVLink hardware,
connectors, or improper physical bridge installation. Resolving
NVLink errors requires inspection of NVLink-related soft-
ware and hardware, and GPU reset to clear [1]. To detect
data corruption during transmission, NVLink employs Cyclic
Redundancy Checks (CRCs) to monitor control and data
packets. When a CRC checksum fails, the NVLink driver
automatically retransmits packets starting from the last-know-
good transmission.

GPU Memory Errors. GPU memory errors we study
are uncorrectable double-bit errors (DBEs) that exceed the
SECDED ECC correction capability. The exact number of
SBEs are unknown as SBEs are automatically corrected by
ECC mechanism and hence are not logged. A DBE trig-
gers downstream error recovery mechanisms such as row-
remapping and error containment, which are described below.

NVIDIA A100’s memory is SECDED ECC protected. Since
DBEs are uncorrectable, A100 GPUs employ memory row-
remapping as the primary mechanism to mitigate DBEs.
During row-remapping, the NVIDIA driver uses a spare row
to replace the faulty memory row by altering the memory
mapping table. Row-remapping event (RRE) is logged if a
row is successfully marked for replacement. Conversely, a
row remapping failure (RRF) is logged if all spare rows
are exhausted [1], [2]. Delta site reliability engineers (SREs)
actively track row-remapping failures and replace GPUs that
repeatedly log RRFs.

In addition, A100 GPUs employ additional resilience mech-
anisms: (i) dynamic page offlining and (ii) error containment
to maintain GPU node availability [1], [2]. Dynamic page
offlining isolates the faulty memory page by marking it as
unallocable at runtime, helping to preserve GPU node avail-
ability without requiring a reset [2]. Error containment mech-
anisms prevent the spread of uncorrectable memory errors
by terminating affected user processes that access corrupted
memory regions [2]. When containment succeeds, the event is
recorded as a Contained Memory Error; if containment fails, it
is logged as an Uncontained Memory Error. Failures in either
row remapping or error containment process can lead to GPU
failures that require a GPU reset or a full node reboot to
recover.

III. METHODOLOGY

A. Data Source

We conducted our data analysis on the error-recovery data
collected from Delta’s A100 GPU nodes over an 1170-day
period from January 2022 to March 2025. Delta’s SRE further
divide this measurement period into pre-operational (bring-up
and testing) period, from January 2022 to September 2022, and
operational (production) period from October 2022 to March
2025. Below, we describe the data used in Stage I of Fig. 1.

2

Stage I: Data

Collection & Extraction

Delta HPC

System &

Slurm

Scheduler

Logs

Stage II:

Pre-Processing

Stage III:

Data Analysis

Error Coalescing

NVIDIA GPU (XID)

Error RegEx Matching

GPU Error Pr imary

Error Keyword

Matching

MPI/SW Error RegEx

1

Error Statistic Metr ics

Propagation Analys is &

Impact on User Job

3

2

2022/01

to

2025/03

NVRM: Xid 119, Timeout
waiting for RPC from
GSP! Expected function

GSP_RM_CONTROL
(0xffffffff 0x33303328).

Figure 1: Data collection, processing, and analysis pipeline.

System logs and Slurm database. Delta system logs are
collected from all compute nodes and record information,
warning, and error events from all system components. The
system logs are collected and consolidated per day for all
nodes in the system. The pipeline additionally employs regular
expression (RegEX) pattern-matching for filtering system logs
to extract the selected XID error-recovery events, as shown
in Fig. 1-(1). The set of extracted GPU error logs is the major
data source of subsequent data analysis.

In addition, Delta HPC uses the Slurm Scheduler [3] for
scheduling user jobs. The Slurm scheduler database consists
of per-job submission records that were used to study the
impact of GPU errors on job failures. The information includes
per job submission time, start time and end time, resource
requested, and scheduled node. In addition, the Slurm database
also records job exit status and the run command line, which
provides valuable information for more fine-grained analysis.

B. Data Processing Pipeline

This subsection focuses on Stage II and III of the pipeline
in Fig. 1, which processes the raw logs, computes error counts
and mean time between errors, and characterizes error impact
on user jobs.

Error Coalescing. The error coalescing step in Fig. 1-
(1), stage ii, reduces duplicated errors. Error coalescing is
an essential step for accurate error analysis because the
same error can result in multiple, repeated log lines in close
succession. Counting each log line as a separate error leads
to over-counting, which significantly underestimates the GPU
resilience. The error coalescing step mitigates this issue by
combining identical error log lines from the same GPU in a
short time window ∆t into a single error, i.e., only counting
the first occurrence in ∆t, as the same error likely causes
subsequent identical log lines [4]–[7].

Error Statistic Metrics. The data analysis stage of the
pipeline (in Fig. 1-(2)) analyzes the coalesced error logs and
outputs standard reliability error statistics such as error counts
and mean time between errors (MTBE), as in [6], [7]. The
per-node MTBE, computed by multiplying the system-wide
MTBE with the number of nodes, indicates the duration of
a single Delta GPU node can function before encountering
a GPU error. These statistics provide resilience assessments
for GPU errors singly and collectively, e.g., a short MTBE
highlights the weak links in system resilience to be improved.

User Job Impact Analysis. The user job impact analysis
step (Fig. 1-(3)) characterizes the impact of GPU errors on
user jobs by correlating GPU errors with user job failures. §V
provides the detail of this analysis. Note that we only analyze
impacts on user jobs in the operational period (from October
2022 onward) after the system has started to accept production
user workloads.

IV. CHARACTERIZING GPU RESILIENCE

This section characterizes the resilience of Delta’s NVIDIA
A100 GPU errors in three categories: (a) GPU hardware,
(b) NVLink, and (c) GPU memory, as described in §II-B
and Table I using error statistic metrics including counts
and mean time between error (MTBE). The selected errors
in Table I are critical because they propagate to the user job,
as we show in §V. Below, we highlight key findings from
our GPU error statistics analysis and compare error statistics
between the pre-operational and operational periods to under-
stand the benefits of pre-operational testing and improvements
brought by refining operational procedures. Note that we do
not compare Delta directly with Blue Waters [7] (NVIDIA
Kepler), Titan [8] (NVIDIA Kepler), or Summit [6] (NVIDIA
Volta) as those GPUs are one or several generation(s) behind
NVIDIA A100 GPUs.

The statistical highlights are as follows:
(i) As shown in Table I, in the pre-operational period,

uncontained memory errors were the predominant errors that
accounted for 92% (38,900) of the total error (42,405). These
uncontained memory errors originated from one faulty GPU
that was replaced upon discovery, which substantially elim-
inated memory errors during the remaining pre-operational
period. During the operational period, MMU errors, NVLink
errors, and GSP RPC timeouts were the predominant errors,
accounting for over 98% (14,642 out of 14,821) of the total
GPU errors in that period. These errors could lead to a GPU
error state, causing interruptions to user jobs.

(ii) Delta’s per-node MTBE slightly degraded from 199
hours5 in the pre-operational period to 154 hours in the
operational period, a 23% reduction. This was primarily due
to the reduction in per node MTBE of GSP and PMU errors,
likely due to the increased GPU utilization, as discussed below.
That said, we observed large improvements in the MTBE
of RRE, RRF, NVLink, and contained/uncontained memory
errors, potentially due to the early replacement of defective
GPUs and automatic node health checks that actively monitor
GPU-related errors, prompting timely error-recovery process.

(iii) Contrary to common beliefs that memory is more prone
to error, A100’s GPU memory is 160× (per node MTBE of
155 hours vs 24,749 hours) more reliable regarding MTBE
than GPU hardware during the operational period. Among
the GPU hardware components, the newly introduced GSP
is prone to error due to limited error detection and recovery
mechanisms. Delta SREs indicated that GSP errors frequently

5We excluded those 38,900 uncontained memory errors when calculating
the per-node MTBE for the pre-operational period, as those errors were
generated by one faulty GPU and were considered an outlier by SREs.

3

Table I: Delta NVIDIA Ampere A100 GPU resilience statistics.
Event Abbr. Category Description Recovery Action Count Pre-op MTBE (hrs) Op MTBE (hrs)

Code Pre-op Op System-
wide Per Node System-

wide Per Node

XID 31 MMU Error Hardware GPU memory management unit
(MMU) error.

MMU error due to invalid memory
access or driver/hardware bugs. 1,078 8,863 6.1 649 2.4 257

XID 48 DBE Memory Double bit ECC memory error (DBE).
Triggers RRE; GPU reset or node

reboot is needed to clear this error if
RRE failed.

0 1 – – – –

–

Uncorrectable
ECC

memory
Errors

Memory Multiple SBEs or a DBE at a memory
location.

Triggers RRE; GPU reset or node
reboot is needed to clear this error. 46 34 143 15,208 632 66,967

XID 63 RRE Memory
Row remapping event, triggered by 1
DBE or 2 SBE at the same memory

address.
GPU reset needed for row remapping. 31 34 213 22,568 632 66,967

XID 64 RRF Memory Row remapping failure of a row
remapping event.

A GPU reset is needed to clear this
error. 15 0 440 46,640 – –

XID 74 NVLink
Error

Inter-
connect

NVLink error, indicating connection
issues between GPUs via NVLink

interconnection.

GPU reset or SRE intervention
required. 2,092 1922 3 334 11 1185

XID 79
GPU Fallen
Off the Bus

Error
Hardware

GPU has fallen off the system bus and
is not reachable, which is typically

caused by driver or hardware errors.

GPU reset or SRE intervention
required. 4 10 1,650 174,900 2,184 227,688

XID 94
Contained
Memory

Error
Memory

Uncorrectable contained ECC error,
indicating a successful uncorrectable
error containment that prevents error

propagation by terminating the
affected processes.

Not specified. 22 13 300 31,800 1,652 175,145

XID 95
Uncontained

Memory
Error

Memory
Uncontained memory error, indicating

an unsuccessful uncorrectable error
containment.

GPU reset or SRE intervention
required. 38,900 11 0.17 18 1,953 206,989

XID
119/120 GSP Error Hardware

NVIDIA GPU Systems Processor
(GSP) error. GSP is a coprocessor that
manages GPU initialization and other

tasks.

GPU reset or SRE intervention
required. 209 3857 32 3,347 5.6 590

XID
122/123

PMU SPI
Error Hardware PMU SPI RPC read failure, indicating

a failed communication with the PMU. Not specified. 8 77 825 87,450 279 29,569

*Error description and recovery action are derived from [1], [2].
*An NVIDIA Ampere A100 GPU supports page retirement and up to 512-row remapping; the previous generations support 64-page retirements and no row-remapping [2].
*Row remapping, Contained memory Error, and Uncontained memory Error are mechanisms introduced in the NVIDIA Ampere architecture for uncorrectable memory error management.
*Per node MTBE in hours is derived by multiplying system MTBE with the number of A100 GPU nodes, 106 nodes in total.
*Pre-op: pre-operational period; Op: Operational period; hrs: hours.

led to user job interruption and node outage, requiring manual
node draining and reboot to recover, introducing significant
overheads. The user job impact analysis (see §V) shows that
100% of the GSP errors lead to user job failure. Notably, the
per node MTBE of GSP errors is 5.6× shorter in operational
period (590 hours) compared to pre-operational period (3,347
hours), indicating a reduction in GSP resilience potentially due
to higher GPU utilization after entering production.

(iv) PMU SPI communication errors are frequent and exhib-
ited high correlations with MMU errors, which then resulted in
a job failure over 96% of the time, as shown in §V. Although
PMU SPI communication error is a high-impact error from
a user job perspective, it is not highlighted in NVIDIA’s
Developer’s Manual [1]. We observed errors of this type in
both pre-operational and operational period in our data, with
3× worsen MTBE during the operational period, potentially
due to higher GPU utilization.

(v) NVLink errors were more frequent than we anticipated,
with 1,922 total NVLink errors in the operational period,
which translates to a per-node of 1185 hours and system-wide
MTBE of 11 hours, despite the usage of CRC error detection
and other recovery mechanisms. Of those, 42% propagates
two or more GPUs in the operational period, and overall, 54%
NVLink errors led to a job failure. Apparently, GPU is more
resilient to NVLink error than GSP error as the remaining
46% of the jobs ran to finish, meaning that the GPUs were
still operational despite the NVLink errors. We conjuncture
that this was because the NVLink was not in use when those
errors happened, so the completion of the job was unaffected.

(vi) A100 GPUs memory were resilient to uncorrectable

memory errors such as DBEs as we observed only one DBE
during the 895 days operational period. All uncorrectable
memory errors were mitigated by the row remapping process
(RRE) and no RRF was observed in the operational period.
Although not encountered during the operational period, fail-
ure in error containment manifests as uncontained memory
errors that can be bursty and persisting in nature, presenting
a resilience challenge. In one case, uncontained memory error
persisted for 17 days (May 5th to May 21st 2022) in the
pre-operational period without recovery, generating over a
million duplicated log entries that were potentially disrup-
tive to the GPU node’s normal operation. Delta SREs use
automatic health checks to actively monitor uncorrectable and
uncontained memory errors for timely node recovery and GPU
replacement to reduce node downtime.

V. PROPAGATION OF GPU ERRORS TO USER JOBS

This section examines job-level fault tolerance and the
impact of GPU-related failures on system availability. When a
GPU encounters an error, two major consequences may arise:
1) Job Termination: If the error is unhandled or propagates
beyond containment, the running job can crash.
2) GPU Unavailability: Hardware faults may necessitate re-
setting or physically replacing a GPU, resulting in a temporary
period where the GPU cannot host any workload.

A. Job Statistics

Over the characterization period, users submitted 1,445,119
jobs to GPU nodes, achieving a success rate of 74.68%, and
1,686,696 jobs to CPU nodes, with a comparable success rate

4

XID GPU
Error

GPU-failed
jobs

encountering
given XID

#Jobs
encountering

given XID

Job Failure
Probability

given an XID Error (%)

31 MMU Err. 3206 3543 90.48
122 SPI PMU RPC failure 40 41 97.56
119 GSP RPC Timeout 31 31 100.00
74 NVL Err 43 80 53.75
94 Contained ECC 5 5 100.00

Table II: Distribution of GPU-failed jobs across the different
GPU error types. The failure probability is calculated as
(# GPU-failed jobs encountering that GPU error) / (# Jobs
encountering that GPU error). The total number of GPU-failed
jobs is 3,285 during the 2.5-year operational period.

of 74.90%. The majority of GPU jobs (69.86%) utilized a
single GPU, while 27.31% leveraged 2–4 GPUs, and only
2.83% required 4 or more GPUs.

Since explicit labels indicating whether a job was machine
learning (ML) related were unavailable, we approximated the
fraction of ML jobs by analyzing job names and loaded
modules or libraries. 6 For example, job names including
keywords like model or train were considered indicative of
ML workloads. Comprehensive statistics on GPU node usage
and job durations for these categories are summarized in
Table III.

B. Job Failure Analysis

To investigate patterns of job failures, we categorize jobs
into two groups: Completed” and GPU-Failed,” based on their
final status. Using this classification, we examine: (i) the types
of GPU errors most commonly associated with job failures,
and (ii) potential mitigation techniques such as checkpointing
and exception handling.
Job Classification Methodology: Jobs are labeled according to
their recorded exit status and the temporal correlation between
GPU errors and job termination events. Exit statuses are
retrieved from Slurm scheduler logs, as outlined in §III-A. A
job is designated as “GPU-failed” if a GPU error is detected
within a twenty-second window preceding the job’s failure.
Correlating GPU Errors and Job Failures: We analyze GPU-
failed jobs by categorizing them according to the GPU errors
most likely responsible for the failure. Table II summarizes
the probability of job failures associated with each type of
GPU error. Since multiple errors can occur close to a job’s
termination, we attribute any GPU error detected within the
twenty-second window before failure as a potential contributor.

In general, most GPU errors—such as ECC faults, GSP RPC
timeouts, and PMU failures—tend to propagate and ultimately

6Due to privacy policies, the exact submission scripts were not examined
for classification.

Figure 2: Unavailability Time Distribution.

GPU Count (%) Elapsed Time (minutes) GPU Hours (k)
Count Mean P50 P99 ML Non-ML
1 1,013,170 (69.86) 175.62 10.15 2483.12 241.6 2724.0
2-4 396,133 (27.31) 145.04 4.75 2880.03 344.6 3108.7
4-8 22,474 (1.55) 133.89 2.70 2880.20 57.9 338.6
8-32 15,440 (1.07) 270.40 73.73 2880.17 107.1 1332.7
32-64 2,054 (0.14) 204.52 10.25 2817.08 161.9 226.4
64-128 913 (0.063) 226.28 0.32 2211.94 25.1 322.3
128-256 82 (0.006) 226.53 9.19 2785.29 0.0 52.4
256+ 25 (0.002) 32.12 20.40 120.14 0.0 4.5

Table III: Job distribution, elapsed time statistics (Mean, P50,
P99), and GPU hours divided into ML and Non-ML categories
for various GPU configurations.

cause job termination. However, NVLink and MMU-related
errors do not always result in job failure due to the following
reasons:
1) NVLink errors may occur even when the affected link or
GPU is idle or unused by active jobs, and
2) MMU errors may be masked at the application or library
level. Besides true hardware faults, MMU errors can also
arise from software bugs where illegal memory accesses
are attempted but not mapped in the virtual address space.
Such errors can often be mitigated using application-level
exception handling. Modern machine learning libraries and
frameworks [9], [10] provide support for handling these cases
by skipping faulty training iterations, though at the potential
cost of degraded model quality.

C. Impact of GPU Downtime on Jobs

Beyond compute time lost to failed jobs, additional node
hours are consumed during the recovery process for affected
GPU nodes, either through a node reset or hardware replace-
ment. Resetting a node typically involves draining it, allowing
any active job to be completed, followed by a reboot. If the
node passes post-reboot health checks, it returns to service
and resumes scheduling new jobs. Otherwise, if the reset fails,
the node remains marked as failed until the GPU hardware is
physically swapped.

To estimate average system downtime, we measure the
period during which the GPU remains unavailable, primar-
ily encompassing drain and reboot times. Fig. 2 presents
the distribution of unavailable durations observed during the
characterization period. On average, servicing a failed node
takes approximately 0.88 hours, resulting in a cumulative loss
of 5,700 node hours due to GPU downtime. Using observed
downtime and failure rates, we estimate GPU node availability
as MTTF

MTTF+MTTR = 99.5%, where the Mean Time To Failure
(MTTF) is 162 hours7 and the Mean Time To Repair (MTTR)
is 0.88 hours.

VI. RELATED WORK

Existing work has analyzed GPU resilience at the
microarchitecture- and system level. This work extends previ-
ous work by comprehensive analyses of GPU error character-
istics during the pre-operational and operational periods and
their impact on HPC/ML workloads.

7The MTTF estimate is derived from the GPU’s Mean Time Between Errors
(MTBE), under the conservative assumption that all GPU errors cause node
interruption.

5

Prior work [11]–[14] has primarily focused on the resilience
of individual GPUs at the microarchitecture level, e.g., for
older generations such as NVIDIA G80/GT200/Fermi. None
of those works evaluate modern GPUs’ resilience in HPC
settings. Various works have analyzed the resilience of GPUs
in HPC systems [15]–[19] e.g, the NVIDIA Tesla K20X
GPUs in various supercomputers [5], [7], [8], [20]–[24]. In
particular, the studies on Blue Waters, Titan, and Summit
supercomputers [6]–[8], [23] have examined node and GPU
failures. Complementary those works, we are the first to study
the resiliency of modern NVIDIA A100 GPUs in an HPC
system.

VII. CONCLUSION

This paper described the results of a resilience study of
Delta’s 448 A100 GPUs. The study uses three years of data
(12.5 million GPU hours) on critical GPU errors collected
across those GPUs. We assesses the resilience of GPU com-
ponents and their impact on node availability and user jobs,
and compared statistics in pre-operational (testing) period
with operational (production) period. Future work extends
this analysis to the NVIDIA Grace Hopper systems that are
equipped with H100 GPUs.

REFERENCES

[1] NVIDIA. (2024) GPU Deployment and Management. [Online].
Available: https://docs.nvidia.com/deploy/pdf/XID Errors.pdf

[2] NVIDIA Corporation, NVIDIA GPU Memory Error Management, May
2024, release r555. [Online]. Available: https://docs.nvidia.com/deploy/
a100-gpu-mem-error-mgmt/index.html

[3] A. B. Yoo, M. A. Jette, and M. Grondona, “Slurm: Simple linux utility
for resource management,” in Job Scheduling Strategies for Parallel
Processing, D. Feitelson, L. Rudolph, and U. Schwiegelshohn, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 44–60.

[4] D. Tiwari, S. Gupta, J. Rogers, D. Maxwell, P. Rech, S. Vazhkudai,
D. Oliveira, D. Londo, N. DeBardeleben, P. Navaux et al., “Understand-
ing gpu errors on large-scale hpc systems and the implications for system
design and operation,” in 2015 IEEE 21st International Symposium on
High Performance Computer Architecture (HPCA). IEEE, 2015, pp.
331–342.

[5] ——, “Understanding GPU errors on large-scale HPC systems and
the implications for system design and operation,” in 2015 IEEE 21st
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2015, pp. 331–342.

[6] V. Oles, A. Schmedding, G. Ostrouchov, W. Shin, E. Smirni, and
C. Engelmann, “Understanding gpu memory corruption at extreme scale:
The summit case study,” in Proceedings of the 38th ACM International
Conference on Supercomputing, 2024, pp. 188–200.

[7] C. Di Martino, Z. Kalbarczyk, R. K. Iyer, F. Baccanico, J. Fullop, and
W. Kramer, “Lessons learned from the analysis of system failures at
petascale: The case of Blue Waters,” in 2014 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, 2014,
pp. 610–621.

[8] B. Nie, D. Tiwari, S. Gupta, E. Smirni, and J. H. Rogers, “A large-
scale study of soft-errors on gpus in the field,” in 2016 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2016, pp. 519–530.

[9] PyTorch Contributors. (2018) Discussion: How to Handle
Exception in DistributedDataParallel. Accessed: 2024-11-26. [On-
line]. Available: https://discuss.pytorch.org/t/how-to-handle-exception-
in-distributeddataparallel/42026

[10] PyTorch Lightning Contributors. (2021) PyTorch Lightning Discussion:
Handling Exceptions in Forward Pass. Accessed: 2024-11-
26. [Online]. Available: https://github.com/Lightning-AI/pytorch-
lightning/discussions/15188

[11] A. Vallero, S. Tselonis, D. Gizopoulos, and S. Di Carlo, “Multi-faceted
microarchitecture level reliability characterization for nvidia and amd
gpus,” in 2018 IEEE 36th VLSI Test Symposium (VTS). IEEE, 2018,
pp. 1–6.

[12] D. Sartzetakis, G. Papadimitriou, and D. Gizopoulos, “gpufi-4: A
microarchitecture-level framework for assessing the cross-layer re-
silience of nvidia gpus,” in 2022 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS). IEEE, 2022,
pp. 35–45.

[13] S. K. S. Hari, T. Tsai, M. Stephenson, S. W. Keckler, and J. Emer,
“Sassifi: Evaluating resilience of gpu applications,” in Proceedings of
the Workshop on Silicon Errors in Logic-System Effects (SELSE), 2015.

[14] L. Yang, G. Papadimitriou, D. Sartzetakis, A. Jog, E. Smirni, and D. Gi-
zopoulos, “Gpu reliability assessment: Insights across the abstraction
layers,” in 2024 IEEE International Conference on Cluster Computing
(CLUSTER). IEEE, 2024, pp. 1–13.

[15] I. S. Haque and V. S. Pande, “Hard data on soft errors: A large-scale
assessment of real-world error rates in gpgpu,” in 2010 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing. IEEE,
2010, pp. 691–696.

[16] N. DeBardeleben, S. Blanchard, L. Monroe, P. Romero, D. Grunau,
C. Idler, and C. Wright, “Gpu behavior on a large hpc cluster,” in
Euro-Par 2013: Parallel Processing Workshops: BigDataCloud, DIHC,
FedICI, HeteroPar, HiBB, LSDVE, MHPC, OMHI, PADABS, PROPER,
Resilience, ROME, and UCHPC 2013, Aachen, Germany, August 26-27,
2013. Revised Selected Papers 19. Springer, 2014, pp. 680–689.

[17] A. Kokolis, M. Kuchnik, J. Hoffman, A. Kumar, P. Malani, F. Ma,
Z. DeVito, S. Sengupta, K. Saladi, and C.-J. Wu, “Revisiting reliabil-
ity in large-scale machine learning research clusters,” arXiv preprint
arXiv:2410.21680, 2024.

[18] H. S. Gunawi, R. O. Suminto, R. Sears, C. Golliher, S. Sundararaman,
X. Lin, T. Emami, W. Sheng, N. Bidokhti, C. McCaffrey et al.,
“Fail-slow at scale: Evidence of hardware performance faults in large
production systems,” ACM Transactions on Storage (TOS), vol. 14, no. 3,
pp. 1–26, 2018.

[19] N. Cini and G. Yalcin, “A methodology for comparing the reliability
of gpu-based and cpu-based hpcs,” ACM Comput. Surv., vol. 53, no. 1,
Feb. 2020. [Online]. Available: https://doi.org/10.1145/3372790

[20] D. Tiwari, S. Gupta, G. Gallarno, J. Rogers, and D. Maxwell, “Reliability
lessons learned from gpu experience with the titan supercomputer at oak
ridge leadership computing facility,” in Proceedings of the international
conference for high performance computing, networking, storage and
analysis, 2015, pp. 1–12.

[21] S. Gupta, D. Tiwari, C. Jantzi, J. Rogers, and D. Maxwell, “Understand-
ing and exploiting spatial properties of system failures on extreme-scale
hpc systems,” in 2015 45th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks. IEEE, 2015, pp. 37–44.

[22] S. Gupta, T. Patel, C. Engelmann, and D. Tiwari, “Failures in large
scale systems: long-term measurement, analysis, and implications,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2017, pp. 1–12.

[23] B. Nie, J. Xue, S. Gupta, C. Engelmann, E. Smirni, and D. Tiwari,
“Characterizing temperature, power, and soft-error behaviors in data
center systems: Insights, challenges, and opportunities,” in 2017 IEEE
25th International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS). IEEE, 2017,
pp. 22–31.

[24] G. Ostrouchov, D. Maxwell, R. A. Ashraf, C. Engelmann, M. Shankar,
and J. H. Rogers, “Gpu lifetimes on titan supercomputer: Survival
analysis and reliability,” in SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE,
2020, pp. 1–14.

6

https://docs.nvidia.com/deploy/pdf/XID_Errors.pdf
https://docs.nvidia.com/deploy/a100-gpu-mem-error-mgmt/index.html
https://docs.nvidia.com/deploy/a100-gpu-mem-error-mgmt/index.html
https://discuss.pytorch.org/t/how-to-handle-exception-in-distributeddataparallel/42026
https://discuss.pytorch.org/t/how-to-handle-exception-in-distributeddataparallel/42026
https://github.com/Lightning-AI/pytorch-lightning/discussions/15188
https://github.com/Lightning-AI/pytorch-lightning/discussions/15188
https://doi.org/10.1145/3372790

