
LogDiver: A Tool for Measuring Resilience of
Extreme-Scale Systems and Applications

Catello Di Martino, Saurabh Jha, William Kramer, Zbigniew Kalbarczyk, Ravishankar K. Iyer
University of Illinois at Urbana Champaign Urbana, IL, USA

{dimart, sjha8, wtkramer, kalbarcz, rkiyer}@illinois.edu

ABSTRACT
This paper presents LogDiver, a tool for the analysis of
application-level resiliency in extreme-scale computing sys-
tems. The tool has been implemented to handle data gener-
ated by system monitoring tools in Blue Waters, the petas-
cale machine in production at the University of Illinois’ Na-
tional Center for Supercomputing Applications. The tool is
able: i) to filter, extract, and classify error data from dif-
ferent sources of information, such as system logs, hardware
sensors and workload logs; ii) to extract signals from the
categorized errors; iii) to consolidate user application data
and decode application and job exit status, highlighting the
reasons for the application/job exit; and iv) to correlate ap-
plication failures with errors using a mix of empirical and
analytical techniques. To the best of our knowledge, this
is the first tool capable of measuring application-level re-
siliency in extreme-scale machines. We also demonstrate the
power of the tool by showing that XK applications are more
vulnerable to failures when compared to XE applications.

Keywords
B.8.1 [Performance and Reliability]: Reliability, Testing, and
Fault-Tolerance - HPC applications; Log Analysis

1. INTRODUCTION
Although today we understand the main characteristics

of failures in supercomputing environments [1–8], the issue
of job and application resiliency has been less well-studied.
Modern supercomputers are equipped with fault-tolerant in-
frastructures that are capable of protecting job and appli-
cation executions from failures due to either hardware or
software problems. Hence, important questions are, what
are the errors and failures that affect the resiliency of jobs
and applications executing on supercomputers? And what
factors are important to characterize such errors?

This paper presents LogDiver, a tool for the analysis and
measurement of system- and application-level resiliency in
extreme-scale environments. Unlike past work, LogDiver fo-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
FTXS’15, June 15, 2015, Portland, Oregon, USA.
Copyright c© 2015 ACM ISBN 978-1-4503-3569-0/15/06 ...$15.00.
DOI: http://dx.doi.org/10.1145/2751504.2751511.

cuses on the analysis of user applications, i.e., the compiled
programs launched by user jobs, which can execute across
one or more compute nodes. Parallel jobs can spawn sev-
eral applications at a time, i.e., different programs on one
or multiple nodes, that can execute concurrently and/or se-
quentially. We claim that it is important to analyze the error
behavior of applications launched within a job to accurately
characterize both system- and application-level resiliency.

Why LogDiver? The analysis of application-level re-
silience requires use of a mix of empirical and analytical tech-
niques: (i) to handle the large amount of textual data; (ii) to
decode specific types of system events and application/job
exit codes obtained from multiple data sources, e.g., system-
generated syslogs, job scheduler logs, and application sched-
uler logs; (iii) to extract signals of interest (e.g., error rates);
and (iv) to measure error propagation and application re-
siliency. LogDiver is a tool set that supports automated er-
ror characterization of large-scale systems in a holistic man-
ner. The LogDiver -based analysis allows us to examine error
propagation patterns, estimate the likelihood of error detec-
tion and the frequency of error occurrence, measure error
impact(s) at both system and application levels, and assess
efficiency of error recovery. Data-driven analysis conducted
using LogDiver produces highly robust metrics for quanti-
fying the impact of exogenous variables (e.g., the system
load, the application scale, and the user expertise) on the
application-level resiliency. To the best of our knowledge,
this is the first tool that allows the characterization of er-
rors observed at the granularity of user applications (rather
than at the batch job level). Such in-depth understanding
of application error sensitivity is essential for realistic per-
formance evaluation of current systems and to guide design
of resiliency mechanisms.

In this paper, we describe LogDiver’s workflow and pro-
vide examples of the types of analysis the tool supports.
Overall the data includes about 6 TB of syslogs, and reflect
more than 4 million user applications launched from March
1, 2013 to July 27, 2014 by more than 650,000 jobs run by
919 users, totaling more than 190 million node hours.

2. THE LOGDIVER APPROACH
LogDiver is a tool created to measure application-level

resiliency of extreme-scale machines in a holistic manner.
The LogDiver -based analysis allows us to create a unique
dataset encapsulating events that are central in i) perform-
ing resiliency and performability measurements, iii) sup-
port the application of machine learning techniques to cre-
ate application-level error detectors, and iii) measuring how

syslogs
6.6TB Extract

Template

Sys. Administrator
(Validation)

ID
60931
9545
19842
56724

Description
passive node first up after deadtime
* this client was evicted by * in …
error: syslog 52 unexpected text
machine check events logged

Count
320
1187
9987
10023

Filter
0
0
1
0

ID

19842
9545
56724

TAG

GEMINI_CRC_ERROR
LUSTRE_EVICTED
MACHINE_CHECK

Category

GEMINI
LUSTRE
NODE_HW

Error Event Templates
(358 out of 22,082)

Apply Data Filter

x  !!
! 

! 
x  !!

Data Tagging

Alps Logs
65GB

•  Marchine checks
•  GPU Hardware counters
•  Gemini counters
•  Blade controllers
•  …

Hardware
sensors

• aprun app1
• aprun app2
• ….

User
applications

User job(s) User

Scheduling
queue(s)

Workload (job and application data)

St
ep

 1
: d

at
a

co
lle

ct
io

n

Step 2: create event templates and data filtering

Torque Logs
Consolidator

Workload logs
consolidator

Run
jobs

Step 3: Workload Consolidation

4: Workload-Error Matching

Error Logs
130 GB

Workload Data Generation

Metric estimation
•  MTBI, MNBF
•  Node Hours,

duration, scale
•  Probability

Failure
•  …

Consolidated
Data (output)

Torque
Logs

54GB/
month

Application
exit codes
database Consolidated

application and
job dataset

•  Evaluate estimator (time series) on rates, count
and interarrival for tagged error, for each node
•  Compute correlation metrics (change of point

detection and cross-correlation) for each estimator
• Group errors happening in app [StartTime,EndTime] on the nodes
in app NodeList with high correlation in a time window T

Software sensors/dectors
e.g., timeouts, crashes, file systems-level
detectors, scheduler/OS-level detectors

Figure 1: LogDiver data processing workflow

multiple factors (e.g., application scale and system errors)
impact application. Uniquely, this tool does the following:

• Allow a precise identification of the reasons behind ap-
plication termination,

• Directly relates system errors and failures (e.g., Gemini
ECC errors, GPU MMU errors and Lustre file system
failures) to application failures, and

• Provides a unified representation of the workload/error/
failure logs, permitting workload-failure analysis and
computation of a range of quantitative performance
and dependability metrics.

An in-depth characterization of the application failures
caused by system-related issues is essential to evaluating the
performance of current systems and to guiding the design of
resiliency mechanisms.

While the tool was designed with respect to Cray architec-
ture, it can be extended to other type of systems by changing
a limited number of components.

To the best of our knowledge, this is the first tool that
allows the characterization of the impact and propagation
of system errors on running applications. Such in-depth un-
derstanding of application error sensitivity is essential for
realistic performance evaluation of current systems and to
guide design of resiliency mechanisms.

In the following, we briefly describe the workflow enforced
in LogDiver.

2.1 Workflow
LogDiver operates in 5 main steps, depicted in Figure 1.

Each step produces several output files that are fed down-
stream to the subsequent step. Data in intermediate output
files can also be used by external tools (e.g., Matlab and SAS
to perform workload characterization) to conduct additional
analysis beyond what LogDiver supports.

2.2 Step 1: Data Collection
Objective: collecting data from multiple sources. Many

sources are redirected to the syslog, including a subset of the
data generated by the various hardware sensors deployed in
Blue Waters. Data is collected by the system-level logging
daemons and periodically moved by LogDiver to a workspace
where to analysis takes place. 1

1We are currently developing a system-level plugin for the

Input : system-generated syslogs and workload logs, in-
cluding job scheduler logs (i.e., TORQUE logs) and appli-
cation scheduler logs (i.e., ALPS logs).

Output : data parsed to an internal format that is system-
agnostic.

Syslogs include system events logged by the OS and by
Hardware Supervisory System (HSS), and entries generated
by the Sonexion cluster implementing Blue Waters’ LUS-
TRE file system.2 Syslogs events include i) the timestamp
of the event, ii) the facility, indicating the type of software
that generated the messages, iii) a severity level, indicating
how severe the logged event is, iv) the identification of the
node generating the message, v) the process, including the
PID (process identifier) of the process logging the event, and
vi) the event description.

TORQUE logs include information on created, canceled,
scheduled, and executed jobs in the system. Each entry
in the TORQUE logs consists of 45 fields containing time
information on all the phases of the job (creation, queue,
execution, and termination times), user, group, queue, re-
sources, the type and the list of used nodes, and wall-time
used.

ALPS logs include information on node reservation man-
agement, job/application launching, periodic monitoring and
termination of user applications, and detected internal prob-
lems and cleanup operations. ALPS logs are redirected by
the system console to the syslogs and merged with other
system events.

2.3 Step 2: Event Tagging and Filtering
Objective: to identify, categorize and filter the error events

contained in the collected data.
Input : parsed syslogs.
Output : (i) a list of categories containing only events of

interest, i.e., the error data, referred as message template;
(ii) the filtered dataset, referred as error data.

A message template is a combination of a fixed text and a
variable text in each raw log entry. The fixed part is the text
that indicates the specific event that generated the syslog
entry, e.g. “NODE ID client was evicted by LUSTRE OST
NODE ID in PARTITION ID”, with “* client was evicted
by * in *” being the template (see Figure 1). LUSTRE
OST NODE ID, PARTITION ID in the example encodes
the information related to the specific event logged, i.e., the
id of the node evicted, the evicting Lustre node, and the
partition to which the eviction refers. We equipped LogDiver
with a set of functionalities to identify all the fixed (i.e., the
template) and variable items in the logs and to substitute
with a wild card symbol (the * in the example in the bottom
left corner of Figure 1) the variable items, such as IP, MAC,
node id, hardware address, dates, user names, and numbers.

The categorization consists of assigning a specific unique
numerical template ID, tag, category and group to each error
template. The tag is a textual description of the event of in-
terest (e.g., GPU MMU ERROR or LUSTRE EVICT), the
category refers to the subsystem generating the event (e.g.,
NVIDIA GPU or LUSTRE), and the group corresponds to
the subsystem involved in the event (e.g., NODE HW or
STORAGE). For instance, the example in the bottom left

ALPS prologue and epilogue in order to collect data before
and after each application.
2Refer to [8] for a more detailed description of the system.

Figure 2: LogDiver Main Output: (a) apid2Error
dataset matching workload data with error data, (b)
coalesced error data

corner of Figure 1, we assigned the tag CPU MACHINE CHECK
and category NODE HW to the template with ID 56724 1).

That step is the only semi-automated part of the tool;
the other steps are fully automated. The categorization of
error templates requires frequent interactions with technical
personnel for validation purposes. At the end of this step,
all the entries matching the obtained templates identified at
step 2 are retrieved from the data and tagged according to
the tag, category, and group in the template list.

2.4 Step 3: Workload Consolidation
Objective: To create a consolidated dataset that includes

information on jobs, application runs, used resources (e.g.,
type and ID of used nodes), user options (e.g., used resiliency
features), in order to enable the matching of workload data
with error data, performed in the next step.

Input : the TORQUE and ALPS logs.
Output : an extended data set of user applications (re-

ferred to as “application data” in Figure 1), which include 1
entry of 46 fields for each application. Important fields are
i) start and end time, ii) reservation ID, job ID, user, group,
application name, iii) resources data, e.g., number, ID and
type of nodes, memory, and virtual memory, iv) application
exit code and job exit code, v) job- and application-required
wall time and used wall time, and vi) user command used
to launch the application.

The required application data is scattered over several
nonconsecutive entries in the ALPS logs and needs to be
retrieved and assembled for each user application. Another
important operation performed by this step is to extract staff
applications from the dataset. Blue Waters staff can exe-
cute privileged applications, such as hardware tests or run
dedicated benchmarks without passing through the batch
queue. As a consequence, many staff applications do not
have corresponding job information as it happens for user
applications. To this end, LogDiver interfaces with the user
access list (e.g., the LDAP user and group table) to gather
user information and identify system personnel.

2.5 Step 4: Workload-Error Matching
Objective: to match and collate relevant error data with

the consolidated workload data.
Input : filtered error events and the consolidated workload

traces (application data in Figure 1).

Output : (i) apid2Error dataset (Figure 2.(a)) where each
each application run by Blue Waters is paired with all the
errors that the application experienced while executing; (ii)
Coalesced Errors dataset, where all the errors occurring with
high correlation on nodes executing the same instance of
application (including the service nodes serving XE and XK
node requests related to the this application) are grouped
together to form error tuples.

The error-application association is performed by over-
lapping the workload data with errors occurring between
the start time and end time of the considered application,
on one of the nodes executing the application or one of the
service/IO nodes serving the application.

In order to correlate application failures with error data,
LogDiver uses a mix of empirical and analytical techniques
that can be classified into 2 categories: (i) correlation anal-
ysis methods to separate local from global effects across
events generated by different nodes and/or different error
categories; and (ii) event coalescence, to group specific er-
rors occurring with high correlation.

Event Correlation. A first step to allow cross-correlation
analyses is to model error data in a uniform way. To that
end, we model error events as a set of (stochastic) point pro-
cesses, i.e., a set of individual events generated at random
points in time Ti. We represent the point processes using
different representations and domain transformations based
on both inter-arrival process and sequence of counts. An
inter-arrival process is a real-valued random sequence with
In = Tn − Tn−1. The sequence of counts, or the count pro-
cess, is formed by dividing the time axis into equally spaced
contiguous intervals of T to produce a sequence of counts
Ck(t), where Ck(T) = Nk+1((T) −Nk(T) denotes the num-
ber of events in the k-th interval. The normalized version
of the sequence of counts, the rate process is obtained by
dividing Ck(T) by the size of the sampling interval T . The
correlation is then performed using Pearson’s lagged corre-
lation coefficient computed across different point processes
generated by nodes executing the same application. The
correlation can be estimated with respect to any error as
well as considering only specific tags, categories and groups.

Event Coalescence. LogDiver employs different coales-
cence techniques, making it possible to perform analyses at
different levels of detail. Specifically, it can coalesce errors
generated by i) the same error category/tag, ii) the same
node, iii) nodes allocated to the same job and/or application,
and iv) the whole system, considering only console logs. The
last type employs hypothesis testing and domain expertise in
order to avoid grouping independent events (e.g., two ECC
memory errors on two different nodes). We used domain ex-
pertise to create an adjacency matrix of signals that can be
mutually influenced, e.g., GPU MMU errors with GPU volt-
age level. We grouped the events i) temporally when they
show high (lagged) cross-correlation values, and ii) spatially
(i.e., events generated across different nodes, blades, and
cabinets) only when they are generated by nodes executing
the same application.

2.6 Step 5: Metrics
The last part of the tool is in charge of estimating various

metrics of interest. Table 1 shows an example of a subset
of the computation modules LogDiver modules and related
input and output data. The metrics are computed with
respect to i) the whole system, ii) application name, iii)

Table 1: Example of LogDiver ’s output data.

the user ID, iv) the node type (i.e., XE and XK nodes), v)
node hours, and vi) the application/job scale. For each of
the mentioned metrics, LogDiver estimates both empirical
distributions (cumulative and density functions) as well as
synthetic statistics including mean, standard deviation, and
confidence intervals. The metrics provided by the tool are
valuable for correlation studies design to quantify the impact
of exogenous variables, such as the load, application scale,
and expertise of the user, on the application resiliency.

3. BLUE WATERS FIELD DATA
We illustrate our approach by providing examples of the

fault/error characterization analytics provided by LogDiver.
We conducted the analysis of data produced by Blue Waters
during the 365 production days (August 1, 2013 to August 1,
2014) to create an initial error categorization. Our dataset
includes 2,359,665 user application runs of more than 1,500
code bases, 769,321 jobs and 296,114,457 error events stored
in 4̃TB of syslogs. During the measured period, we mea-
sured an MTBF of 8.8h, and an overall availability of 0.968,
computed after excluding scheduled downtimes, system up-
grades and programmed maintenance actions.

3.1 Blue Waters Errors
At the end of step 2, LogDiver identified 22,082 different

templates in the logs, i.e., about 300 million error entries
belongs only to about 22,000 different events. Those events
were further reduced to 5,127 using a set of 92 keywords
identified by Blue Waters staff. These we manually screened
and reduced to 398 templates of events potentially affecting
system and user operations.

Figure 3 shows the classification and count of the error

G C TAG ENTRIES G C TAG ENTRIES G C TAG ENTRIES
L1_FIRMWARE 37,789 EVICT 20,990,344 BUFFER_OVERFLOW 9,373,707
ADMINDOWN 264,421 INTERRUPTED_SYSCALL 1,740,283 CHECKSUM_ERROR 3,238
NODE_HALT 6,088,540 IO_ERROR 150,457 DATA_ERROR 204
NODE_BAD_HEALTH 162,333 LBUG 39,317 ECC_ERROR 95,409
NODE_SUSPECT 1,673,973 MDS_DEVICE_BUSY 883,526 FMA 36,716
NODE_UNAVAILABLE 1,413,764 MOUNT_TIMEOUT 1,304 MACHINE_NOT_ONLINE 101,007
EC_NODE_FAILED 2,214 NET_LOOKUP 21,682 MISROUTED_PACKET 38,053,828
DVS_HEARTBEAT 84 NETWORK_ERROR 17,457,779 PACKET_DROP 364,534
DVS_MOUNT 138,533 OST_DEVICE_BUSY 1,385,726 PACKET_ERROR 1,983,362
DVS_NOT_AVAILABLE 2,041,558 PERMISSION_DENIED 12,344 LANE_FAILED 151,866
BLADE_HEARTBEAT 396,015 FAILOVER_ERROR 2,755 LINK_FAILED 236,476
CABINET_HEALTH 237,798 QUOTA 62 LANE_RECOVERY_FAILED 1,744
EPO 32 STALE_NFS_HANDLE 219,670 CHIP_ERROR 2,673
WARMSWAP_FAILED 40 TIME_REWIND_BUG 61 CONGESTION 204
POWER 14,790 TIMEOUT 3,859,820 CORRUPT_ROUTING_TAB 90
VRM 185,047 TRANSPORT_SHUTDOWN 15,570,189 FAILED_ROUTE 12
BLADE_FAILURE 60 UNKNOWN_NID 2,211 UNCORRECTABLE_ERROR 86
HARDWARE_ERROR 387 WAITING_RECOVERY 55,472,681 L0_TIMEOUT 54
MCE 3,820,645 FILESYSTEM_FAILURE 167 LINK_RECOVERY_FAILED 108
DBE 56 IO_ERROR 133,375 ROUTING_FAILURE 5,034
INVALID_DEVICE 248,789 NO_SPACE_LEFT 4,109 CONNECTION_FAILED 4,149,469
MMU_ERROR 218,533 PROCESS_KILLED 807 CRITICAL_HW_ERROR 409,034
UNABLE_TO_RESET 125,089 FATAL_ERROR 659
UNKNOWN_ERROR 1,022 CONNECTION 429,124 HARDWARE_QUIESCE 2,162
MODULE_MISSING 728 INTERNAL_ERROR 310 INVALID_MMD 3,030,234
CRASH 3,729,585 JOB_DEPENDENCY 37,092 IO_ERROR 74,411
LDAP_TLS 204 JOB_STUCK 3,273 NO_ROUTERS 19,855,107
MPI_USER_EXCEPTION313 MOM_MISCOMMUNICATION6,998 NODE_DEAD 1,573
OOM 238,354 UNEXPECTED_JOB_STATE 4,106 OOM 2,203,423
SSHD 1,279 CANNOT_ALLOCATE_MEMORY1,274 PACKET_DROP 22,837,200
OOPS 31,955 CONNECTION 60,889 PEER_DOWN 2,156,277
KERNEL_NULL_POINTER1,190,579 KILLED_APID 367 PROTOCOL_ERROR 838,256
OS_ERROR 422 NODE_HEALTH 227,258 SINGLE_BIT_ERROR 719,987
PANIC 49,007 STALE 4,138,421
RSIP 771,597 TIMEOUT 17,463,278

G = GROUP TRANSPORT_SHUTDOWN 93
C = CATEGORY UNKNOWN_NID 71,882

Tot. Entries
NO

DE
/B

LA
DE

G
EM

IN
I

RE
SI

LI
EN

CY
 A

RC
HI

TE
CT

UR
E

BL
AD

E

LN
ET

NE
TW

O
RK

G
PU

SY
S/

US
ER

 S
O

FT
W

AR
E

LU
ST

RE
M

O
AB

AL
PS

SO
NE

XI
O

N
ST

O
RA

G
E

SC
HE

DU
LE

R

270,166,713

Figure 3: Extracted error templates.

messages obtained from the considered datasets in Blue Wa-
ters. We categorized the 398 templates in 105 error tags (i.e.,
error types) generated by 10 error categories (relating the er-
ror tag to the specific involved subsystem), further catego-
rized into five error groups: i) Network, which includes Gem-
ini (e.g., routing or Gemini hardware errors) and LNet errors
(e.g., packet dropped or endpoint shutdown), ii) Scheduling,
which includes errors encountered by Moab/TORQUE (e.g.,
impossibility to allocate/deallocate resources for a job) and
ALPS (e.g., crash of the ALPS processes), iii) Node/Blade,
which encompasses errors detected by the resiliency mech-
anisms and hardware/software detectors employed in Blue
Waters nodes; events include errors generated by the GPU,
memory, and processor (e.g., GPU MMU errors and node
warm-swap failed), as well as system/user software errors;
and v) Storage, which includes errors generated by Lustre
(e.g., client eviction) and the Sonexion cluster (e.g., I/O er-
rors on the storage nodes).

In order to reduce the filtering time, LogDiver is equipped
with a data-parallelization framework that i) splits the in-
put data set into smaller sets, ii) produces a parallel batch
script assigning batches of 32-64 data files per node, iii) or-
chestrates the submission of a job to the target computing
system, and iv) collects and merges the results gathered by
the nodes, creating a new single data set. Each node exe-
cutes a customized filtering script that includes 32-64 con-
current processes, one for each input data file. The number
of concurrent processes per node and the total number of
nodes used depend on the available memory and number of
cores per node in the computing environment.

3.2 Application Exit Status
Table 2 shows the breakdown of the job and applications

in our dataset. 64.53% of the total user runs are XE appli-
cations (i.e., 1,522,694), 35.46% are XK applications (i.e.,
836,971) using CPU and GPU accelerators. To compare the
composition of XE and XK applications with respect to ap-

Table 2: Workload across different scales.

Figure 4: Breakdown of decoded exit statuses.

plication scale, we subdivided the applications into 6 classes
following the rules in Table 2. Blue Waters data include
only a limited number of applications that can effectively
use full-scale executions. Even when running at full scale,
many applications do not execute for a long time, e.g., 75%
of the full-scale XE applications in the measured data run
for less than 5 h, with a median of 1.2 h. As we shall discuss
in the next section, tolerating variety of errors at ’Full’ scale
is not a trivial task.

Breaking down the application exit status. There
are more than 256 possible application exit codes, many of
which are ambiguous or application dependent. An exam-
ple is that of the exit code 143 (i.e., application terminated
by issuing a TERM signal), which can be issued when the
application is killed either by system errors or by the user.
LogDiver is able to disambiguate and categorize an appli-
cation exit reason by matching error data with application
exit code data. Exit reasons are classified into the following
categories: (i) Success, for applications completing success-
fully, ii) Walltime, for applications not completing within
the allocated wall clock time, iii) User, for abnormal ter-
minations caused by user-related problems including com-
piler/linking/job script and command errors, missing mod-
ule/file/directory or wrong permissions, and user-initiated
actions such as a control-C signal or termination/kill com-
mands, iv) System, when an application is terminated due to
system-related issues caused by any of the considered system
errors, and v) User/System, when an application is termi-
nated for causes that can be related to both user and sys-
tem events, such as errors detected by the applications (e.g.,
through assertions) and handled by means of legit exit.

Figure 4 gives the breakdown of the application exit sta-
tuses. 61.2% of XE applications (Figure 4.(a)) and 76.4%
of XK applications (Figure 4.(b)) exited successfully. The
remaining applications failed due to several reasons, includ-
ing: i) the application execution time exceeds the time limit
(3.4% for XE and 7.1% for XK, category ’walltime’); ii) user-
related problems (22.2% for XE and 12.2% for XK, category
’user’); iii) system-related problems (1.4% for XE and 1.83%
for XK) caused by hardware, software, configuration, or net-

74.6%
90.3%

59.5%
38.3% 31.0%

49.6%

14.1% 1.6%

2.3%

9.1%
4.1%

4.7%

1.6% 4.23%

21.87%
31.12%

40.51%

24.03%

7.8% 2.5%
13.6% 16.3% 17.4%

20.2%

1.9% 1.4% 2.7% 5.1% 7.0% 1.6%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

single nano low med high full

XE applications
system walltime user/system user success

63.3% 68.2%
82.3%

64.9% 70.9% 66.6%

1.4% 1.5%

1.6%
4.1%

4.3% 5.7%
28.7%

8.0%
0.8%

5.9%
6.4% 5.0%

3.8%
16.0% 10.5%

15.7% 10.3% 12.1%

2.8% 6.3% 4.8% 9.4% 8.1% 10.7%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

single nano low med high full

XK applications
walltime user/system user system success

(a) (b)

Figure 5: Breakdown of Blue Waters application
exit statuses for XE (a) and XK (b) applications
across different scales

work issues at the system or node levels and happen with a
MTBI (production hours / total application interrupts) of 15
minutes; and iv) a combination of user- and system-related
causes, e.g., exceptions raised because of issues with Gemini
rerouting (12% for XE and 2% for XK applications, cate-
gory ’user/systems’). Compared to earlier Cray systems (for
which only job success data are publicly available), Blue Wa-
ters shows a lower percentage of application failures [9–11].
For instance, for Franklin, the Cray XT4 100 Teraflops ma-
chine at NERSC, 61% of applications complete successfully,
whereas 11.5% are terminated because of the walltime limit,
25% are terminated because of user problems, and 2.7% are
killed because of system problems. Athena (166TF, 46 XT4
cabinets) shows that 82% of applications finish successfully.
The percentage of non-reported application failures is be-
lieved to be 3% according to the staff.

XK applications show a higher percentage of appli-
cation failure because of system errors (1.8%) than
XE nodes (1.4%). The difference in the percentage of
failed applications is due to the higher number of XE ap-
plications failing because of user causes (category ”user”,
22.24% for XE applications and 12.20% for XK). The reason
behind that is (1) XE nodes are often preferred by users to
develop and debug their applications before deploying the
code, (2) The wait time for accessing XK nodes is typically
longer than that for accessing XE nodes.

Figure 5 shows the breakdown application exit reasons for
different scales. Key observations are: (i) For XE nodes the
number of applications exiting successfully decreases with
scale while no clear trend can be observed for XK appli-
cations; (ii) The number of application exiting because of
’user/system’ problem increases substantially with the scale
of XE applications while it remains relatively same for XK
applications; (iii) For both XE and XK applications number
of system related exit statuses increases with scale. However
percentage-wise it is substantially higher for XK applica-
tions when compared to XE applications. System problems
cause the failure of 5.65% of full scale XK applications (4,224
nodes) against 1.55% for XE applications (22,640 nodes).

Recall that application failing because of ’user/system’
problem includes unexpected situations successfully captured
built-in error detection mechanism (e.g. assertions). Data in
Figure 5 demonstrates that approaching extreme scales the
error detection capabilities of XE applications (supported by
the XE6 nodes hardware sensors and detectors) are more ef-
fective in capturing anomalous situations than as it happens
for XK applications. XK7 nodes provide provide limited
support for error detection (i.e., GPU monitoring and error
detection) and hence cannot handle unexpected situation as

Figure 6: Blue Waters workload exit status for XE
(d) and XK (e) applications that experienced at
least 1 error during the execution.

effectively as XE6 nodes allow. This finding demonstrates
that XK applications might be more prone to undetected
errors (e.g. Silent Data Corruption) than XE applications
because of the limited error detection capabilities provided
by the platform.

4. APPLICATION RESILIENCY
In this section, we use the output produced by LogDiver

to measure the resiliency of XE and XK applications. Mea-
surements are produced by LogDiver with respect to i) dif-
ferent application scales, from single node application up to
full scale applications, and ii) sensitivity to different error
categories. Recall that the tool performs a matching be-
tween the workload run on each node and the 102 error tags
identified during the step 2 of the approach (Figure 3).

Application Survivability. Figure 6 illustrates the break-
down of the application exit status for all those applications
that experienced at least 1 error during their execution. In
particular, Figure 6 shows the joint distribution of how ap-
plication terminates when operating under error conditions.
It is interesting to note that the success rate of both XE and
XK application decreases when operating under error. XK
applications show little resiliency to error when compared
to XE applications. In particular, the success rate of XK
application goes down from 76.6% to 49% when the applica-
tions operate under error; at the same time, the percentage
of application failing because of system problems grows from
1.83% to 40.55%, while the same phenomenon has a more
modest yet substantial manifestation for XE nodes, where
the success rate goes down from 61.27% to 56.54%. Another
interesting observation is percentage of applications exiting
with unknown status, only 0.002% of XE applications that
suffered error are in this category compared to 0.475% for
XK applications. We speculate that this is because of the
poor error detection mechanism currently present on the
K20X GPUs of XK7 nodes. As it shall be detailed later,
XK applications are more sensitive to system errors for a
variety of reasons. Recovering from GPU errors without ap-
propriate support from error detection mechanisms is a hard
task if not sometime impossible.

4.1 Resiliency to Different Error Categories
As a final demonstration of the potential of LogDiver, we

used the data produced after step 5 (”evaluation of metrics”)
to analyze the impact of different error categories on appli-
cation resiliency. Figure 7 shows the plot of the application
resiliency computed by LogDiver when the applications are

subject to different error categories. The resiliency is mea-

sured as: #applications(successful,error in category Ci)
#applications(total number,error in category Ci)

.

Figure 7 shows how applications react on average (i.e.,
succeed or fail) when subject to errors in the categories in
Figure 3 (See Section 3). The error bar represents the 95%
confidence interval of the estimated figures.

File system and interconnect are critical for medium
to full scale applications. Figure 7.(a) shows the appli-
cation resiliency across XE applications. An interesting ob-
servation is that for applications running at single and nano
scale (within single cabinet) the measurements don’t change
drastically. When applications run on more than one cabi-
net (>96 nodes), we start to see substantial decrease in re-
siliency to interconnect and system problems. In particular,
’Interconnect’ (Gemini) resiliency goes down from 34.89%
for nano to 17.06% for high scale. Similarly, resiliency for
(’LUSTURE’,’ LNET’) goes down from (40.8%, 41.34%) for
nano scale to (21.38%, 22.32%) at high scale respectively.
Slight aberrations in resiliency patterns are observed for
applications running at full scale. This is because at full
scale application developers generally adopt many resiliency
mechanisms to protect application against variety of errors
and typically run for less than 5 hours which means that
these applications will be exposed to various errors for lim-
ited amount of time. It is interesting to note that ’oper-
ating system (OS)’ related errors (e.g. kernel panic, kernel
OOPS) are very critical at any scale. Although, they are
not frequent events they can kill the applications almost
in all cases. The reason for OS critically is that when OS
crashes on a node, it is difficult if not impossible to trigger
node health check or recovery procedures like warm swap
or application migration on healthy nodes. In these cases,
a deeper analysis shows that applications developed using
charm++ frameworks are more resilient than other. The
charm++ framework maintains two copies of checkpoints
in-memory on different nodes and hence chances of recovery
from such failures are higher.

This behavior is even more marked on XK applications
Figure 7(b). In particular, XK applications running at sin-
gle and nano scale (i.e within a cabinet, <=96 nodes) show
higher error resiliency across different categories compared
to other scales. When expanding outside single cabinet, we
observe a sharp decrease in resiliency across all error cate-
gories. In particular, ’interconnect’ (Gemini) problems go
down from nano to full scale. When approaching high and
full scale, file system (’LUSTURE’ and ’LNET’) problems
are typically unrecoverable for XK applications. Interest-
ingly, resiliency to node/blade error does not follow similar
dynamics as the interconnect or file system. We observe lim-
ited variance in resiliency for such errors, bounded between
27.7% and 50.5% of resiliency.

Application Resiliency to GPU errors Figure 7 shows
that GPU related errors (e.g. GPU Drivers) are critical to
XK workloads. In particular, we look how GPU errors af-
fect the XK workload. Our data revealed that there are 5
different types of GPU error codes that occurred during the
measured period. The names and their occurrence count is
given in Figure 3 under GPU heading. Figure 3 shows that
Memory Management Unit (MMU) error is most frequent
while Double Bit Exception (DBE) error is the least occur-
ring. Next, we breakdown the occurrence of GPU errors
according to scale (Full, High, Medium, Small, Nano, Sin-
gle) and exit type (Success, System, Unorderly exit, User,

GE
MI

NI
 47

.0%

GE
MI

NI
 44

.9%

GE
MI

NI
 42

.4%

GE
MI

NI
 7.

3%

GE
MI

NI
 2.

5%

GE
MI

NI
 0.

0%

HE
AL

TH
_C

HE
CK

 32
.9%

HE
AL

TH
_C

HE
CK

 40
.1%

HE
AL

TH
_C

HE
CK

 32
.5%

HE
AL

TH
_C

HE
CK

 17
.0%

HE
AL

TH
_C

HE
CK

 20
.1%

HE
AL

TH
_C

HE
CK

 10
.4%

LN
ET

 35
.0%

LN
ET

 60
.5%

LN
ET

 41
.2%

LN
ET

 14
.4%

LN
ET

 4.
9%

LN
ET

 2.
0%

LU
ST

RE
 41

.9%

LU
ST

RE
 51

.0%

LU
ST

RE
 41

.3%

LU
ST

RE
 19

.8%

LU
ST

RE
 5.

3%

LU
ST

RE
 3.

2%

NO
DE

/B
LA

DE
 30

.7%

NO
DE

/B
LA

DE
, 5

1.5
%

NO
DE

/B
LA

DE
, 3

4.7
%

NO
DE

/B
LA

DE
, 2

7.7
%

NO
DE

/B
LA

DE
, 4

7.8
%

NO
DE

/B
LA

DE
, 4

2.6
%

OS
 0.

0%

OS
 1.

1%

OS
 0.

4%

OS
 0.

0%

OS
 0.

0%

GP
U_

DR
IV

ER
S

2.0
%

GP
U_

DR
IV

ER
S

6.9
%

GP
U_

DR
IV

ER
S

6.6
%

GP
U_

DR
IV

ER
S

11
.1%

GP
U_

DR
IV

ER
S

0.0
%

0%

10%

20%

30%

40%

50%

60%

70%

SINGLE NANO SMALL MEDIUM HIGH FULL

Error Resilience - XK applications

GE
MI

NI
 42

.1%

GE
MI

NI
 34

.9%

GE
MI

NI
 32

.7%

GE
MI

NI
 28

.8%

GE
MI

NI
 17

.1%

GE
MI

NI
 30

.7%

HE
AL

TH
_C

HE
CK

 32
.0%

HE
AL

TH
_C

HE
CK

 44
.2%

HE
AL

TH
_C

HE
CK

 37
.8%

HE
AL

TH
_C

HE
CK

 29
.3%

HE
AL

TH
_C

HE
CK

 24
.4%

HE
AL

TH
_C

HE
CK

 16
.2%

 LN
ET

 46
.4%

LN
ET

 41
.3%

LN
ET

 41
.2%

LN
ET

 34
.3%

LN
ET

 22
.3%

 LN
ET

 34
.2%

LU
ST

RE
 41

.7%

LU
ST

RE
 40

.9%

LU
ST

RE
 40

.6%

LU
ST

RE
 43

.2%

LU
ST

RE
 21

.4%

LU
ST

RE
 18

.7%

NO
DE

/B
LA

DE
 25

.9%

NO
DE

/B
LA

DE
 46

.4%

NO
DE

/B
LA

DE
 30

.1%

NO
DE

/B
LA

DE
 52

.3%

NO
DE

/B
LA

DE
 13

.7%

NO
DE

/B
LA

DE
 16

.1%

OS
 0.

0%

OS
 0.

5%

OS
 2.

1%

OS
 11

.1%

OS
 0.

9%

OS
 0.

0%

0%

10%

20%

30%

40%

50%

60%

70%

SINGLE NANO SMALL MEDIUM HIGH FULL

Error Resilience - XE applications

(a) (b)

Figure 7: Average resiliency (% of application that tolerated the error) of XE (a) and XK (b) applications
to different error categories. The error bars show 95% of confidence intervals.

Exit
Category SU SY UE U U/S W SU SY UE U U/S W

SCALE MMU ERROR UNABLE TO RESET
FULL 11.1% 11.1% 77.8% 100%
HIGH 0.4% 94.6% 4.4% 0.5% 80.0% 20.0%
MED 0.3% 98.8% 0.6% 0.3% 7.7% 53.8% 19.2% 19.2%
SMALL 1.3% 96.7% 1.2% 0.2% 0.6% 1.6% 85.7% 2.2% 3.8% 0.5% 6.0%
NANO 45.1% 36.2% 1.6% 1.2% 16.0% 1.4% 27.1% 24.3% 47.1%
SINGLE 12.1% 78.1% 0.2% 0.2% 0.2% 9.3% 95.1% 2.5% 2.5%
 INVALID DEVICE DBE
FULL 0.0% 100%
HIGH 75.0% 25.0% 50.0% 50.0%
MED 7.7% 50.0% 23.1% 19.2% 100%
SMALL 1.7% 86.3% 1.7% 3.4% 0.6% 6.3% 100%
NANO 57.7% 11.7% 10.4% 20.2% 100%
SINGLE 94.9% 2.5% 2.5%
	
 	
 UNKNOWN	
 ERROR	
 	
 	
 Legend
FULL	
 50.0%	
 50.0%	
 	
 	
 	
 	
 	
 	
 	
 	
 SU	
 SUCCESS	

HIGH	
 	
 	
 60.0%	
 	
 	
 	
 	
 40.0%	
 	
 	
 SY	
 SYSTEM	

MED	
 14.3%	
 71.4%	
 	
 	
 	
 	
 	
 	
 14.3%	
 UE	
 UNORDERLY	
 EXIT	

SMALL	
 15.4%	
 46.2%	
 	
 	
 	
 	
 	
 	
 38.5%	
 U	
 USER	

NANO	
 	
 	
 50.0%	
 	
 	
 	
 	
 25.0%	
 25.0%	
 U/S	
 USER/	
 SYSTEM	

SINGLE	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 W	
 WallDme	

Figure 8: Breakdown of GPU errors across all XK
applications (a), and Vs. different scales (b).

User/System, Walltime) as shown in Fig. 8. This figure
shows the count of applications runs that suffered a particu-
lar type of GPU error after the coalescing stage. As can be
seen in figure, most of these errors lead to application fail-
ing with ’System’ exit code. In some cases, the errors can
lead to all (or most) application failing either in ’Walltime’
such as MMUError at full scale or in ’User/System’ such as
Unable ToReset at full scale. The reason being GPU errors
are hard to tolerate because of poor detection, logging and
recovery techniques limited by hardware itself. The trig-
gered recovery procedure thereafter, takes longer than ex-
pected. The application effectively behaves like a hung ap-
plication and either hits walltime or user decides to manually
kill it. Very few application exit successfully despite suffer-
ing from GPU related errors and these are concentrated at
smaller scales. However, our manual examinations of logs
reveal longer recovery times even at these scales. Thanks
to the data provided by LogDiver tool, we identified that
recovering from system errors is more difficult for XK ap-
plications when compared to XE applications. We analyzed
the traces of few XK application failures because of system
errors to validate the data from LogDiver. Interestingly, we
found that in case of system errors (e.g. ’Gemini’ or ’LUS-
TURE’ problems) applications go into recovery are not able
to recover within the limits of allocated walltime. A closer
look into the trace of few applications allowed us to identify
that there is little or no support restore and resume work-
load running on GPU cores because of lack of appropriate
error detection capabilities/API’s.

Putting all together: MTBI Vs. different error cat-
egories and scales. As discussed in section 2.5, LogDiver
estimates a variety of metrics across variety of scales and
errors. Table 3 shows MTBI number obtained for different

Table 3: MTBI values for XE (a)-(b) and XK (c)-
(d) applications when exposed to error of different
categories, at different scales.

MTBI	
 XE	
 applica-ons	
 (hours)	
 	
 -­‐	
 theore-cal	
 system	
 level	
 MTBI	
 XE	
 nodes	
 =	
 5.69	

h	

GEMINI	

HEALT	

CHECK	
 LNET	
 LUSTRE	

NODE/	

BLADE	
 OS	

Overall	
 (hours)	

FULL	
 4	
 5	
 20	
 12	
 2	
 12	
 8.8	

HIGH	
 7	
 8	
 9	
 7	
 3	
 25	
 12.8	

MEDIUM	
 15	
 10	
 3	
 5	
 25	
 38	
 52.2	

SMALL	
 6	
 9	
 2	
 1	
 5	
 48	
 842.1	

NANO	
 132	
 224	
 42	
 30	
 175	
 1,322	
 1,336	

SINGLE	
 1,872	
 2,466	
 452	
 206	
 10,078	
 4,677	
 5,209	

MTBI	
 XK	
 applica-ons	
 (hours)	
 -­‐	
 theore-cal	
 system	
 level	
 MTBI	
 XK	
 nodes	
 =	
 15.06	

h	

GEMINI	

HEALT	

CHECK	
 LNET	
 LUSTRE	

NODE/	

BLADE	
 OS	

GPU	

DRIVERS	

Overall	

(hours)	

FULL	
 23	
 21	
 10	
 8	
 10	
 -­‐	
 -­‐	
 15.1	

HIGH	
 415	
 108	
 131	
 96	
 100	
 142	
 498	
 113.1	

MEDIUM	
 287	
 157	
 105	
 88	
 135	
 515	
 2,999	
 -­‐	

SMALL	
 10	
 10	
 3	
 2	
 5	
 382	
 179	
 148.3	

NANO	
 474	
 371	
 151	
 103	
 1,496	
 6,043	
 4,872	
 205	

SINGLE	
 146	
 144	
 38	
 22	
 61	
 23,509	
 3,155	
 1,761	

scales and error categories. MTBI is computed as the to-
tal number of system hours spent while computing at scale
x divided by total number of failures occurring because of
category c during that time period. An interesting observa-
tion is that XE applications at full scale can obtain a higher
value of MTBI (8.8 hours) compared to theoretical MTBI
value (5.69 hours). The theoretical value for the MTBI is

given by SingleNodeMTBF
Total number of XE nodes

. This observation implies

that resiliency mechanisms at full scale do an excellent job
in protecting applications from various errors which is con-
sistent with the results of previous section. For Full scale
XK applications, achieved MTBI is 15.1 hours. Unlike XE
applications, XK applications at full scale is only able to
match theoretical MTBI (of 15.06 hours). Thus, leaving a
scope for improvement. If we compute the ratio of achieved
MTBI and theoretical(expected) MTBI, we see that at XE
Full scale the system is able to improve MTBI by 1.55x.
While for XK, it can barely keep up with expected MTBI.

Lustre MTBI goes up as the application scales up from
small to full scale. At full scale, the system is obviously
loaded with smaller number of applications. We found that
there is a correlation between number of active applications
and number of Lustre error (correlation value of 0.495). We
traced this to the way Lustre handles I/O requests. Re-
quests are handled through Meta Data Server (MDS) and
Object Storage Server (OSS). We found that MDS can of-
ten be overwhelmed by high rates of I/O requests. Despite
of 1000’s of threads serving MDS requests, these resources
can easily be consumed. This causes long wait times when
performing I/O operations that in turn have critical impact

on overall application behavior. For example, many appli-
cations experiencing lustre errors are actually terminated
because of reaching the walltime limits. LogDiver is able to
spot this problem and categorizes such problems to applica-
tions failing because of system problems. This shows that
the current lustre architecture suffers from different relia-
bility bottlenecks. Further this shows that there is limited
failure containment as the activities of one application can
influence the resiliency of other applications.

5. RELATED WORK
Resiliency at extreme-scales comes from detecting and

auto-correcting a greater fraction of errors with high im-
pact. Prior research activities have centered on analyzing
error logs [1–6] as well as some online analysis for patterns
preceding a failure, and evaluated the accuracy and efficacy
of anomaly detection and proactive response [12, 13]. They
have addressed one or more of the following issues: basic er-
ror characteristics [1,2,5], modeling and evaluation [6,14,15],
failure prediction and proactive checkpointing [16,17]. There
are many challenges in systematically studying large-scale
systems using operational data, such as data availability,
data collection/mining and fault/failure characterization. In
this paper, we present LogDiver, our solution to address the
issue of the collection, mining and analysis of logs generated
by extreme-scale machines.

While many works provide novel filtering approaches, few
consider errors that really impact production workload in
their analysis. The available characterization studies and
techniques for characterizing errors/failures of extreme scale
machines do not provide sufficient fidelity of understand-
ing to enable researchers and system architects to determine
how applications behave when exposed to errors and assess
architectural requirements for future architectures. Blue
Waters logs contains more than 100 different types of er-
rors that can impact user applications, while others does
not represent a real threat for both system and application
operations. LogDiver is the first to correlate errors to user
applications in extreme-scale environment, providing high-
fidelity resiliency measurements.

6. ACKNOWLEDGEMENT
This work is partially supported by the NSF CNS 10-

18503 CISE, Air Force Research Lab FA8750-11-2-0084, and
an IBM faculty award. We thank Celso Mendes, Gregory
Bauer, Jeremy Enos, and Joshi Fullop for providing the raw
data and many insightful conversations.

7. CONCLUSIONS
This paper presented LogDiver, a tool for the analysis

of application-level resilience to system errors in large-scale
machines. The tool has been developed with respect to the
data produced by Blue Waters but can be applied to other
Cray based supercomputer with small effort.

In the future, we will integrate our workflow into a data
stream-processing platform in order to gather real-time mea-
surements on the system that can be used to detect major
problems at the application level. We will also look on how
to take into account additional data generated by the hard-
ware sensors not currently analyzed by LogDiver. Finally,
we will use the results of the analysis to investigate new data
collection mechanisms to support application-aware fault
classification, and to derive new metrics to predict the re-
siliency of the next generation of extreme-scale systems.

While the examples provided in this paper demonstrates
that it is possible to provide a detailed characterization of
hardware/software errors, we claim that a significant effort
is required to create a classification which applies across dif-
ferent platforms, as our data shows with regards to the dif-
ferent error detection capabilities of XE and XK nodes. One
of the challenges is the fact that some of sensors used by the
system-level error detectors may be available on one plat-
form while absent on another. We will address this challenge
by cross validating the considered error categories with data
from different systems (e.g., Cray XC30 and/or IBM).

8. REFERENCES
[1] R. K. Sahoo, A. Sivasubramaniam, M. S. Squillante, and

Y. Zhang. Failure data analysis of a large-scale heterogeneous
server environment. In DSN ’04: Proc. of the 2004 Int.
Conference on Dependable Systems and Networks, pages
772–781, 2004.

[2] Y. Liang, A. Sivasubramaniam, J. Moreira, Y. Zhang, R.K.
Sahoo, and M. Jette. Filtering failure logs for a bluegene/l
prototype. In DSN ’05: Proc. of the 2005 Int. Conference on
Dependable Systems and Networks, pages 476–485, 2005.

[3] Y. Liang, Y. Zhang, M. Jette, Anand Sivasubramaniam, and
R. Sahoo. Bluegene/l failure analysis and prediction models. In
Dependable Systems and Networks, 2006. DSN 2006.
International Conference on, pages 425–434, 2006.

[4] B. Schroeder and G.A. Gibson. A large-scale study of failures in
high-performance computing systems. Dependable and Secure
Computing, IEEE Transactions on, 7(4):337–350, 2010.

[5] A. Oliner and J. Stearley. What supercomputers say: A study
of five system logs. Dependable Systems and Networks, 2007.
DSN ’07. 37th Annual IEEE/IFIP Int. Conference on, pages
575–584, June 2007.

[6] C. Di Martino, M. Cinque, and D. Cotroneo. Assessing time
coalescence techniques for the analysis of supercomputer logs.
In In Proc. of 42nd Int. Conf. on Dependable Systems and
Networks (DSN), 2012, pages 1–12, 2012.

[7] A. Pecchia, d. Cotroneo, Z. Kalbarczyk, and R. K. Iyer.
Improving log-based field failure data analysis of multi-node
computing systems. In Proceedings of the 2011 IEEE/IFIP
41st International Conference on Dependable
Systems&Networks, DSN ’11, pages 97–108, Washington, DC,
USA, 2011. IEEE Computer Society.

[8] C. Di Martino, F. Baccanico, J. Fullop, W. Kramer,
Z. Kalbarczyk, and R. Iyer. Lessons learned from the analysis
of system failures at petascale: The case of blue waters. In
Proceedings of the 44th Annual IEEE/IFIP Int. Conf. on
Dependable Systems and Networks (DSN), 2014, 2014.

[9] H.W. Lin, Y He, and Yang W.S. Franklin job completion
analysis. CUG 2010, Edinburg, UK, 2010.

[10] Matt Ezell. Collecting application-level job completion
statistics. CUG 2010, Edinburg, UK, 2010.

[11] Nicholas P. Cardo. Detecting system problems with application
exit codes. CUG 2008, Helsinki, Finland, 2008.

[12] A. Gainaru, F. Cappello, M. Snir, and W. Kramer. Fault
prediction under the microscope: A closer look into hpc
systems. In High Performance Computing, Networking,
Storage and Analysis (SC), 2012 International Conference
for, pages 1–11, 2012.

[13] A. Gainaru, F. Cappello, S. Trausan-Matu, and W. Kramer.
Event log mining tool for large scale hpc systems. In
Proceedings of the 17th international conference on Parallel
processing - Volume Part I, Euro-Par’11, pages 52–64, Berlin,
Heidelberg, 2011. Springer-Verlag.

[14] E. Heien, D. Kondo, A. Gainaru, A. LaPine, W. Kramer, and
F. Cappello. Modeling and tolerating heterogeneous failures in
large parallel systems. In Proceedings of 2011 International
Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’11, pages 45:1–45:11, New York,
NY, USA, 2011. ACM.

[15] C. Di Martino. One size does not fit all: Clustering
supercomputer failures using a multiple time window approach.
In JulianMartin Kunkel, Thomas Ludwig, and HansWerner
Meuer, editors, International Supercomputing Conference -
Supercomputing, volume 7905 of Lecture Notes in Computer
Science, pages 302–316. Springer Berlin Heidelberg, 2013.

[16] X. Chen, C. Lu, and K. Pattabiraman. Predicting job
completion times using system logs in supercomputing clusters.
In In Proc. of the 2013 Dependable Systems and Networks
Workshop (DSN-W), pages 1–8, June 2013.

[17] A. Gainaru, F. Cappello, and W. Kramer. Taming of the shrew:
Modeling the normal and faulty behaviour of large-scale hpc
systems. In Parallel Distributed Processing Symposium
(IPDPS), 2012 IEEE 26th International, pages 1168–1179,
2012.

