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Abstract

This study characterizes GPU resilience in Deltal, a large-scale Al
system that consists of 1,056 A100 and H100 GPUs, with over 1,300
petaflops of peak throughput. We used 2.5 years of operational
data (11.7 million GPU hours) on GPU errors. Our major findings
include: (i) H100 GPU memory resilience is worse than A100 GPU
memory, with 3.2x lower per-GPU MTBE for memory errors, (ii)
The GPU memory error-recovery mechanisms on H100 GPUs are
insufficient to handle the increased memory capacity, (iii) H100
GPUs demonstrate significantly improved GPU hardware resilience
over A100 GPUs with respect to critical hardware components, (iv)
GPU errors on both A100 and H100 GPUs frequently result in job
failures due to the lack of robust recovery mechanisms at the appli-
cation level, and (v) We project the impact of GPU node availability
on larger-scales and find that significant overprovisioning of 5% is
necessary to handle GPU failures.
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1 Introduction

Large-scale HPC systems are important not only for scientific
workloads [47] but also for data analytics [1] and machine learning
(ML) [21]. The main components of these systems are specialized
accelerators, such as GPUs, that enable acceleration of computa-
tions, such as ML training [2, 51], ML inference [25], and simula-
tions [39, 46].

! Delta is an HPC system operated by the National Center for Supercomputing Appli-
cations (NCSA) at the University of Illinois Urbana-Champaign.
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This paper studies the resilience of A100 GPUs and compares the
result with H100 GPUs of the GH200 Grace Hopper Superchips?,
together with their associated memory: 40 GB HBM2e on each
A100 GPU, and 96 GB HBM3 on each H100 GPU, respectively. The
A100 GPU nodes and H100 GPUs (GH200 Superchip) nodes are
operated as two independent systems sharing a storage cluster
running the Lustre file system, allowing us to study and compare
the two systems (refer to as Delta). The workflow on Delta involves
users from universities nationwide and presents a spectrum of HPC
and ML workloads. The study uses 2.5 years of data on critical GPU
errors collected across the stated GPUs, encompassing 9.6 million
GPU hours of A100 GPUs and 2.1 million GPU hours of H100, a
combined 11.7 million GPU hours.

This study assesses (i) the resilience of GPU hardware and mem-
ory components; (ii) the error propagation paths in GPU memory,
GPU hardware, and NVLink interconnect; and (iii) the impact of the
observed GPU errors on user jobs. Figure 1 shows an example error
propagation path for an uncorrectable double-bit memory error
in H100 GPU that caused user job failure. The complete recovery
process required node draining and GPU reset, which took 19 hours
following the error detection.

Our major findings include:

(1) H100 shows 3.2x lower per-GPU mean time between errors
(MTBE) compared to A100 for uncorrectable ECC memory errors.
The per-GB MTBE of the H100’s HBM3 memory is 24% lower (~
8.5M hours) than the A100’s HBM2e memory (~ 11.3M hours). We
conjecture that the reduction in memory resilience stems from
H100’s higher memory capacity.

(ii) The GPU memory error-recovery mechanisms on A100 and
H100 GPUs (e.g., memory row remapping, error containment) [35]

2GH200 Superchip, hereafter.
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Uncorrectable Double-bit Memory Error Caused
User Job Failure on H100

[scheduler][slurmctld][2024-11-85T03:25:38]
Job started in ‘ghx4’ partition on ghes3.
[JobId=124966]

[ghes3][kernel] [2024-11-06T62:08:03] An uncorrectable | | DBE led ©©
double bit error (DBE) has been detected on GPU in user job
the framebuffer at physAddr @x13ddbc65a@ partition failure.

22, subpartition 3.[ErrorCode=XID 48]

[scheduler][slurmctld][2024-11-06T02:08:14] Job

completed with error. [JobId=124966, ExitStatus=1] Error
Recovery
[scheduler][slurmctld][2024-11-06T21:39:00] Allocated ~19 hours
JobID=133973 (node starts reaccepting jobs) dewihne

Figure 1: A double-bit memory error (XID 48) occurred, and it is un-
correctable by the SECDED ECC HBM3 memory. Due to this double-
bit error, the user job scheduled on that GPU failed, as reflected in
the scheduler logs. Subsequently, this uncorrectable memory error
requires a node draining and reset to complete the row remapping
recovery action. The total recovery process for this incident took 19
hours, during which the node was unavailable for accepting new jobs.
This incident shows that a GPU error can lead to user job failures
and significantly impact node availability.

improve GPU memory resilience and reduce service interruption.
We observed that these mechanisms mitigate (e.g., using mem-
ory row remapping) 92% of uncorrectable ECC memory errors on
H100 GPUs. However, the memory error-recovery mechanism is
insufficient to handle the increase in memory capacity and the cor-
responding increase in row remapping events on the H100 GPUs.

(iif) H100 GPUs demonstrate significantly improved hardware
resilience over A100 GPUs, with respect to critical components
such as GSP3, NVLink, and PMU SPI#, which were major sources
of job failures in A100 systems. We attribute this to driver-level
enhancements and tighter integration [32, 34], which contribute
to improved resilience. Specifically, comparing H100 and A100
GPU hardware, we observed (a) a significant reduction of GSP
errors on H100 (only 3 cases in our measurement period) and (b)
the elimination of PMU SPI error propagations, which on A100
GPUs can lead to MMU errors 88% of times with 90% leading to
user job failures, (c) no NVLink errors on H100 GPUs during the
measurement period.

(iv) GPU errors on both A100 and H100 GPUs frequently result
in job failures due to the lack of robust recovery mechanisms at the
application level. Except for MMU and NVLink errors, other GPU
errors cannot be handled by application-level mechanisms, resulting
in close to 100% job failure rate. The underlying cause of job failures
differs by GPU type: hardware errors are the predominant cause in
A100 GPUs, whereas memory errors are the primary cause in H100
GPUs. Overall, we find that application-based recovery strategies
are largely ineffective; hence, there is a compelling need to improve
resilience at the GPU memory and hardware level.

(v) The overall availability per-GPU node is approximately
99.4% for A100 GPUs and 99.3% for H100 GPUs, corresponding
3A GPU system processor (GSP) is an onboard co-processor that offloads driver tasks
from the CPU for latency and performance improvement.
4PMU on an NVIDIA’s GPU regulates the frequency, voltage, and power of the GPU
based on various factors such as temperature and power cap. SPI stands for serial

peripheral interface, which serves as the communication channel between peripheral
hardware.
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Figure 2: System architecture and specifications of Delta. This study
focuses on the H100 and A100 GPU nodes.

to a downtime between 9-10 minutes per day. We projected the
impact of this measured availability on larger scales via emulation.
For example, to maintain 99.9% availability at the job level, over-
provisioning of 5% would be necessary. While at first glance, such
overprovisioning would appear to be a small cost, for the above
example, it would cost over $1 million per month. If GPU node
availability were improved to 99.9%, the required overprovisioning
would reduce by 2.5%.

Putting the paper in perspective. Previous studies on char-
acterizing GPU resilience in large-scale systems [10, 11, 17, 18, 30,
31, 36, 37, 49, 50] focus on GPU memory errors in older GPU gen-
erations (Tesla, Kepler, and Volta) that lack the latest resilience
(e.g., row remapping, error containment, NVLink CRC-retry) and
performance features (e.g., GPU System Processor) introduced in
NVIDIA Ampere-generation GPUs. A recent study from Meta [24]
characterizes cluster-level resilience for two large-scale machine
learning clusters equipped with A100 GPUs. Our paper provides
a deeper understanding of GPU errors and failures of two recent
generations of GPUs, A100 and H100, and their impact on a broad
set of HPC/ML applications. To the best of our knowledge, this is
the first study on A100 and H100 GPU errors in HPC/ML systems.

2 Background

This section provides information on (i) Delta specification and
overall GPU utilization, (ii) critical GPU error categories used in
this study, and (iii) GPU error management and recovery.

2.1 Delta Specifications and Utilization

Delta Specifications. Figure 2 shows the layout of Delta, which
consists of a cluster of 106 4- and 8-way A100 40 GB GPU nodes
with 448 A100 GPUs, and in addition, it has a second cluster of
152 4-way GH200 nodes with 608 H100 96 GB GPUs, a total of
1,056 A100 and H100 GPUs. The two clusters share a common
storage cluster running Lustre Filesystem. Our study focuses on
the resilience of A100 GPUs and H100 GPUs (the GPU of GH200),
as they are optimized for AI/ML workloads, exhibit the highest
utilization, and incorporate the latest resilience features.

Delta GPU Utilization. Delta’s NVIDIA A100 GPUs are fre-
quently scheduled and utilized, with an average GPU utilization
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Figure 3: NVIDIA memory error recovery process for A100 and
H100 GPUs.

of 51% during the operational period. NVIDIA H100 GPUs show a
slightly lower average utilization (41%) than A100 GPUs.

2.2 NVIDIA GPU Error Categories

NVIDIA GPU errors are reported as XID errors. In this study, we
selected a subset of XID errors that are described as common and
high-impact by NVIDIA’s Developer Manuals [33, 35], NVIDIA
Developer Forums and Blogs, and Delta site reliability engineers
(SREs). We primarily collected errors and their associated recov-
ery events. The selected XID errors/events indicate GPU issues
that often cannot be resolved without SRE’s interventions (e.g.,
node service and GPU replacement). The selected XIDs and their
corresponding GPU errors are described in Section 4, Table 1. We
categorize the selected GPU errors into three categories: (i) GPU
hardware, which includes all onboard hardware except for GPU
memory and NVLink interconnect, (ii) NVLink interconnect, and
(iii) GPU memory. Note that General GPU Software Error (XID 13)
and Reset Channel Verification Error (XID 43) are usually caused by
user jobs and do not impact the health of the GPU [33]; we excluded
those errors from our study.

GPU Hardware Errors. The critical GPU hardware errors we
studied include MMU?® errors, GPU Fallen Off the Bus errors, GSP
errors, and PMU communication errors. We do not consider other
GPU hardware errors in our study. GPU hardware errors can lead
to user job failures, GPU halt, and data corruption. Among those
errors, GPU Fallen Off the Bus and GSP errors lead to GPU failures,
and manual GPU resets or node reboots are required to recover
from the error [33]. Delta SREs monitor GSP errors closely to ensure
timely recovery to maintain GPU availability.

GPU Interconnect (NVLink) Errors. GPU-GPU NVLink er-
rors are caused by faulty GPU hardware, connectors, or improper
connector installation during system integration, and can lead to
GPU unavailability and user job failures. NVLink errors impede
data transfer between GPUs and reduce computational throughput.
A GPU reset or node reboot is required to clear NVLink errors [33].

GPU Memory Errors. GPU memory errors included in this
study are double-bit errors (DBEs) and consecutive single-bit errors
(SBEs)®. Individual SBEs are not logged, as they are automatically
corrected by ECC. DBEs and consecutive SBEs are considered un-
correctable ECC memory errors by the NVIDIA driver, and they
trigger downstream error-recovery mechanisms [33, 35], which are
introduced in Section 2.1. Failures in these mechanisms can lead to

>The memory management unit (MMU) provides essential memory /O functionalities.
Consecutive SBEs are multiple single-bit error (SBE) occurrences at the same memory
location.

Stage I: Data
Collection & Extraction

Stage II:
Pre-Processing

Stage IlI:
Data Analysis

2
Error Statistic Metrics

NVIDIA GPU (XID)
Error RegEx Matching

S &
yeem & 2022110 GPU Error Primary
Slurm  —o2
Scheduler fm—=—oA . Error Keyword 3
L &= 2025/03 Matching Propagation Analysis
OgS

NVRM: Xid 119, Timeout
waiting for RPC from
GSP! Expected function
GSP_RM_CONTROL
(oxFFFFFFFf 0x33303328).

MPI/SW Error RegEx q Impact on User Job
Error Coalescing

Figure 4: Overview of our data collection, processing, and
analysis pipeline.

GPU/node failures and require GPU or node reboots to recover [33].
Delta SREs continuously monitor uncorrectable ECC memory er-
rors and error-recovery failures to ensure timely replacement of
faulty GPUs.

2.3 NVIDIA GPU Error Management

Here, we provide an overview of the resilience architecture of
NVIDIA A100 and H100 GPUs.

GPU Memory. Figure 3 shows the uncorrectable ECC memory
error-recovery process [35] for A100 and H100 in more detail. The
primary mechanism for mitigating uncorrectable ECC memory er-
rors for A100 and H100 GPUs is row-remapping, wherein the faulty
memory row is replaced with a spare row, and a row-remapping
event (RRE) is logged. The actual row remapping happens at the
next GPU reset (e.g., during node reboot or maintenance). If there
are no spare memory rows, a row remapping failure (RRF) is indi-
cated [33, 35].

A100 and H100 GPUs support online recovery mechanisms such
as error containment and dynamic page offlining [33, 35] for miti-
gating uncorrectable ECC memory errors with minimal node in-
terruption. The dynamic page offlining marks the faulty memory
page as unusable without requiring a GPU reset to maintain avail-
ability. The error containment procedure terminates user processes
using the faulty memory address to prevent error propagation
to other applications. Successful error containment is logged as
a Contained Memory Error, whereas an unsuccessful error con-
tainment is logged as an Uncontained Memory Error. Failure in
a row-remapping or error containment can cause a GPU failure
that requires a GPU reset or node reboot. Delta SREs monitor row-
remapping failures and replace GPUs that repeatedly emit such
errors.

GPU Hardware. While the GPU caches and memory are SECDED
protected, information on failure-recovery mechanisms on GPU
hardware, including peripheral hardware such as GSP, PMU, or SPI
communication channels, is limited.

GPU Interconnect (NVLink). NVLink employs Cyclic Redun-
dancy Checks (CRCs) for error detection to ensure the integrity of
flow control digits and data. Upon encountering a CRC checksum
error, NVLink retries packet transmissions from the last-known
good packet.
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Algorithm 1: Error Coalescing and Persistence Analysis.

Input :Error logs with timestamps E = { (e, 1), ..., (en, tn) }, regex
patterns R = {ry,rs, ... }, time window A¢
Output: Coalesced errors with persistence duration E’
E’ < 0 // Initialize output set
foreach patternr € R do
E, «— {(ej,t;) € E | e; matchesr} // Filter errors with regex
i<« 1// Loop through errors in a matched group
while i < |E,| do
(efirsts Estart ) Hatest < (€3, 2i)s ti
// Loop through later errors within the matched group
while i +1 < |E,| do
(enexts text) < (€i+1, Liv1)
// Error has identical message and is close in time
if enext = €first and tyext — tgrest < Af then
tlatest < Inext // Discard latest error
i—i+1
else
L break

// Store coalesced error and persistence duration
Add (efirst, Estarts Hatest — Estart) to E
L i« i+1// Move to the next unprocessed error

return E’

3 Methodology

3.1 Data Sources

Our analysis was performed on data collected from Delta over its
operational period: (i) 895 days from October 2022 to March 2025
for A100 GPUs and (ii) 146 days from October 2024 to March 2025
for H100 GPUs, covering 11.7 million GPU hours. This section
describes data sources for Stage I: data collection and extraction in
the pipeline in Figure 4.

System logs. System logs collected from all compute nodes
capture events across system components. We created a set of reg-
ular expression (RegEX) patterns and used it to extract GPU error-
recovery log entries by referring to NVIDIA XID messages [33]
from the system logs (Figure 4, item (1)). The GPU error logs were
our major sources of error and recovery information.

Slurm scheduler database. Delta uses the Slurm Workload
Manager [58] (“Slurm scheduler” hereafter) for scheduling user jobs.
The Slurm scheduler database keeps track of user job scheduling
events, including the start and end times, the scheduled nodes,
resource usage, job status, exit codes, and the srun command line.
We used the Slurm database for user job failure characterization.

NVIDIA DCGM database. Delta uses NVIDIA Data Center
GPU Manager (DCGM) to collect metrics and status data from all
GPUs with a one-minute granularity. We used DCGM metric data
to characterize GPU utilization.

3.2 Data Processing Pipeline

This section focuses on Stage II and IIl of the data processing
pipeline in Figure 4, which pre-processes the raw logs, compute er-
ror counts, mean times between errors (MTBE), error propagation,
and impact on user jobs.

Error Coalescing Analysis. The error coalescing step in Fig-
ure 4, item (1) filters out duplicated errors. While most errors are
logged as isolated events, there are frequent periods during which
the same error is logged repeatedly in close succession, i.e., there
are error bursts. During these bursts, the system continually detects
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and attempts to recover from errors, which could lead to either sys-
tem recovery or failure. To prevent over-counting, we assume that
identical error logs within a short time interval (At) from the same
GPU are caused by the same issue. Thus, the error coalescing step
counts only the first occurrence by combining identical error log
lines from the same GPU within a predefined time interval (At)
into a single error (see Algorithm 1). The remaining analyses in
this paper were conducted on errors after the coalescing. We set
At = 5 as decreases in A results in more duplicated logs, while
further increase in A results in negligible changes in coalesced log
count.

Error Statistic Metrics. Using the coalesced error logs as input,
the pipeline computes standard error statistics metrics such as the
count and the MTBE as in [36] (Figure 4, item (2)). For errors that are
not directly countable from XID logs, we estimate their occurrence
by correlating related XIDs within the same time interval [33, 35, 36].
In particular, the number of uncorrectable ECC memory errors can
be inferred by summing up the number of RREs and RRFs, as they
are mutually exclusive outcomes of an uncorrectable ECC memory
error recovery event. Subsequently, the number of consecutive
SBEs can be obtained by subtracting the number of DBEs from the
number of uncorrectable ECC memory errors.

In addition, we computed system-wide MTBE and derived per-
node MTBE by normalizing the error count using the number of
GPU nodes in Delta. The per-node MTBE indicates the operational
hours a single Delta GPU node can function before encountering an
error. For GPU memory resilience characterization, we additionally
derived per-GPU MTBE by normalizing the error count using the
number of GPU in a node and per-GB MTBE by normalizing the
error count with per GPU memory capacity in GB. The per-GPU
MTBE reflects the operational hours a single GPU can function
before encountering an error.

Error Propagation Analysis. We performed error propagation
analysis (Figure 4, item (3)) to capture how errors propagate within
a GPU and across different GPUs while measuring the propagation
time. The propagation probability from GPU error e; to ey is defined:

#ey
Total #e;’
A propagation path is created if ey occurs immediately after e;
within a predefined time window At. If there is no succeeding
error ey after e; within At, then eq is a terminal error that does
not propagate. For intra-GPU’ propagation, we require errors e
and e to be on the same GPU device, whereas for the inter-GPU
propagation, e; and ez are from two distinct GPUs on the same
node. We recorded the time difference between the initial (e;) and
subsequent errors (ez), referred to as the propagation time, for each
propagation event. A shorter propagation time suggests a higher
correlation between e; and ez. We applied the same At selection
criteria as the error coalescing analysis and selected the At = 5
seconds in error propagation analysis.

User Job Impact Analysis. The user job impact analysis step
(Figure 4, item (4)) associates GPU errors with failed user jobs
to characterize the impact of GPU errors on user jobs. Section 5
provides detail on this analysis.

P(ezler) = te, —te, < At.

7GPU devices are identified by their node ID and PCI Express bus address.
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Table 1: Delta NVIDIA Ampere A100 and Hopper H100 (GPU of GH200 Superchip) GPU resilience statistics.

Event Abbr. Category Description Recovery Action Count MTBE (hrs)
Code A100 H100 System-wide Per Node
A100 | H100 | A100 | H100
GPU memory management unit MMU error due to invalid
XID 31 MMU Error Hardware Y g memory access or 8,863 1,737 2.4 2 257 307
(MMU) error. .
driver/hardware bugs.
Triggers RRE; GPU reset or
XID 48 DBE Memory Double bit ECC memory error (DBE). node reboot is needed to 1 17 - 206 - 31,330
clear this error.
. . . Triggers RRE; GPU reset or
Ci t C t le-bit ECC
- ONSECUIVE | Memory onsecutive single-bi MEmOTY | ode reboot is needed to 33 7 651 501 | 68,99 | 76,087
SBEs errors (SBEs). .
clear this error.
Uncorrectable Triggers RRE; GPU reset or
- ECC memory | Memory Consecutive SBEs or a DBE. node reboot is needed to 34 24 632 146 66,967 22,192
Errors clear this error.
Row remapping event triggered by
XID 63 RRE Memory | uncorrectable MBE: one DBE or two | O U feset needed forrow |, 16 632 219 | 66967 | 33288
remapping.
SBEs at the same memory address.
XID 64 RRF Memory Row remapping failure of a row GPU reset is needed to o 3 _ 438 B 66,576
remapping event. clear this error.
. NVLink error indicating connection
Xp7e | WVHnk Inter- issues between GPUs via NVLink  GPUresct or SRE 1,922 - 11 - 1,185 -
Error connect . . intervention required.
interconnection.
GPU Fallen GPU has fallen off the system bus and
P E
XID 79 Off the Bus Hardware is not reachable, typically because of . CPU rgset or SB 10 - 2,148 - 227,668 -
. . intervention required.
Error driver or hardware issues.
Contained
1 ined E
XID9% | Memory | Memory | Uncorrectable contained ECC error, Not specified. 13 14 1652 | 250 | 175144 | 38,043
indicating successful containment.
Error
Uncontained Uncontained memory error, indicatin, GPU reset or SRE
XID95 | Memory Memory contained memory €rron, Idicating | - esetorst 1 19 1,953 184 | 206989 | 28,032
Error failure in containment. intervention required.
XID GSP Error Hardware NVIDIA GPU Systems Processor (GSP) . GPU rgset or SRE 3,857 3 6 1168 500 177.536
119/120 eITOor. intervention required.
XID PMU SPI PMU SPI read/write failure, indicating .
122/123 Error Hardware failed communication with the PMU. Not specified. 77 279.0 29,570

*NVIDIA A100/H100 GPU supports page retirement and up to 512 row remappings (RRE); previous generations support only 64 page retirements (no row remapping support).
*Row remapping, contained memory error, and uncontained memory error are new resilience features introduced starting with the NVIDIA Ampere architecture for uncorrectable

ECC memory error management.

*Per-node MTBE in hours is derived by multiplying system MTBE by the number of GPU nodes of the corresponding GPU type. The number of nodes and number of GPUs per

node type are specified in Figure 2.

*All XID events presented, except for row remapping events, are errors. However, for simplicity, we treat all XID events as errors in this paper.
*Uncorrectable ECC and Consecutive SBEs are inferred from the corresponding recovery event RRE and RRF (see Section 3.2).

4 Characterizing GPU Resilience

This section characterizes and compares the resilience of Delta’s
NVIDIA A100 (Ampere) and H100 (Hopper) GPUs. Specifically, we
discuss error statistics and error propagation of GPU errors in three
categories: (i) GPU memory, (ii) GPU hardware, and (iii) NVLink
interconnect, as described in Section 2.2 and Table 1. These errors
are critical because they interrupt user jobs and lead to unplanned
node downtime, as we show in Section 5. We first highlight error
statistics and key findings from our analysis and then focus on
error propagation for each of the three error categories on Delta’s
workload. Note that we do not directly compare Delta with Blue
Waters [11], Titan [30], or Summit [36] because of the significant
generational gap from the GPUs used in those machines.

4.1 Error Statistics and Result Highlights

Table 1 summarizes the selected critical GPU error statistics for
A100 GPUs and H100 GPUs during the operational period, includ-
ing error count, system-wide mean time between errors (MTBE)
and per-node MTBE. As described in Section 2.2, these selected
errors are critical XID errors that can lead to user job interruption

and node downtime, requiring manual SRE intervention for recov-
ery. In the operational period, a total of 14,821 critical errors (listed
in Table 1) were recorded for Delta’s A100 GPUs, with a system-
wide MTBE of 1.4 hours and node MTBE of 154 hours. Delta’s H100
GPUs encountered 1,821 GPU errors, with a system-wide MTBE of
1.9 hours and node MTBE of 292 hours, higher than A100 nodes.
Next, we use the results from Table 1 to assess the resilience charac-
teristics of GPU memory, GPU hardware, and NVLink interconnect
in greater detail.

GPU Memory. Recall that, each A100 GPU incorporates 40
GB of HBM2e memory, and each H100 GPU incorporates 96 GB
of HBM3 memory. H100’s shows 3.2x lower per GPU MTBE for
uncorrectable ECC memory errors compared to A100’s, despite
comparable per-GB MTBE. This reduced resilience likely stems
from H100’s higher memory density, which trades resilience for
capacity and performance. The observed lower per node MTBE of
RREs and higher RRF counts on H100 GPUs further suggest that
current resilience features are insufficient for increased memory
capacity. As a uncorrectable memory error can cause a multi-GPU
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job to fail, enabling uninterrupted execution in such cases at scale
remains an open challenge.

(i) Delta’s H100 GPUs exhibit lower memory resilience than
the A100 GPUs. Specifically, the per GPU MTBE is 3.2X lower on
H100 GPUs at 88,768 hours versus 283,271 hours for A100 GPUs.
Based on the per GPU MTBE, we calculated the per GB MTBE to
be 8,521,728 hours® for H100’s HBM3 memory vs. 11,330,826 hours
for A100’s HBM2e memory, a 24% reduction.

We attribute the decrease in resilience is primarily due to the
higher memory capacity (96 GB vs. 40 GB, a 2.4X increase), which
increases the chances of bit flips. We additionally hypothesize that
H100 memory resilience is worse due to (a) a lower signaling volt-
age that increases susceptibility to bit flips [56] and (b) an increased
number of stacks that make heat dissipation challenging and de-
grade the resilience of memory modules, of the HBM3 memory.

(if) Uncorrectable ECC memory error-recovery mechanisms
(e.g., row remapping and error containment, see Section 2.1) im-
prove GPU memory resilience and reduce service interruptions [35].
The error recovery mechanisms mitigate uncorrectable memory
errors with a probability of 0.92 on H100 according to error propa-
gation analysis in Section 4.2. However, these mechanisms may not
scale well with the increase in GPU memory capacity in H100. For
example, the available spare rows for row remapping are capped at
the same 512 rows [35], which is not proportional to the 2.4X in-
crease in memory capacity. Such insufficiency can be evident from
the significantly lower per node MTBE of RRE on the H100 GPUs
than the A100 GPUs, indicating more frequent recovery events.
In addition, we observed 8 RRFs on H100 GPUs during the early
operational period, which indicates memory recovery failure due
to exhaustion of spared memory rows. We have yet to observe an
RRF on the A100 GPUs during the much longer operational period.

GPU Hardware and NVLink Interconnect. GPU hardware
such as GSP, PMU SPI, and NVLink are critical components from a
resilience perspective for A100 GPUs, leading to node downtime
and job failures. In this context, H100 GPUs demonstrate significant
improvements in GPU hardware resilience, especially in critical
components such as the GSP, PMU SPI, and NVLink. We believe
that these improvements are likely due to the tightly integrated
heterogeneous CPU-GPU architecture of GH200 [34] and driver-
level enhancements [32]. We present a detail analysis below.

(i) Among the GPU hardware components on A100 GPUs, GSP,
intended as a performance enhancement, is the most vulnerable due
to its lack of robust detection and recovery. Our error propagation
analysis (Section 4.2) shows that over 99% of GSP errors put the
GPU in an error state and lead to job failure if encountered. A GSP
error requires a GPU reset or a node reboot to recover, introducing
significant overheads. In addition, PMU SPI communication errors
propagate downstream and cause MMU errors with a probability
of 0.88, leading to MMU errors, which then, in turn, result in a job
failure over 90% of the time. Although PMU SPI communication
errors are high-impact errors, they are not highlighted in NVIDIA’s
developer’s manual [33].
8We calculated the per GB MTBE by multiplying the per node MTBE with the total

memory of all GPUs in GB for that node. For example, in a 4-way H100 GPU node
with 96 GB of memory, the per GB MTBE = 22,192 X 96 X 4 = 8, 521, 728 hours.
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Figure 5: Intra-GPU uncorrectable memory error recovery
paths in H100 GPUs. Numbers on the edges show propagation
probability. The precise sub-second timing information is
not available in the H100 nodes’ system logs. All propagation
time for H100 GPUs memory errors were within one second.

(ii) Despite error detection mechanisms such as CRC and re-
covery mechanisms such as message retransmitting, NVLink GPU
interconnect errors are frequent (1,922 total NVLink errors) on A100
GPUs, with a node MTBE of 1,185 hours (system-wide MTBE of 11
hours); 42% (801) of the NVLink errors affected two or more GPUs.
Although NVIDIA [33] indicates that a GPU reset or a node reboot
is required to clear NVLink, Delta SREs suggested that NVLink
errors were largely benign and did not always lead to job failures.
Indeed, the user job impact analysis shows that an NVLink error
has a 54% chance of leading to a job failure (see Section 5). When
an NVLink error is observed but does not affect a user job, it may
be because NVLink is primarily used for communication rather
than computation in many jobs or because multiple NVLink errors
within the same job have a consolidated impact, resulting in high
occurrence rates but minimal application disruption.

(iif) H100 GPUs have substantially improved GPU hardware
resilience over A100 GPUs: only 3 GSP errors were observed dur-
ing the measurement period. Moreover, the number of GPU Fallen
off the bus errors, NVLink errors®, and PMU SPI errors were not
observed in H100 GPUs. We attribute this improvement to (a) the
better packaging and tight of CPU and GPU into a single hetero-
geneous compute module, which significantly reduces integration
errors and enhances the resilience of the CPU-GPU complex, and
(b) the NVIDIA driver upgrades appear to have improved GSP and
NVLink stability (also observed by the Delta SREs).

GPU Failure and Replacement. During the measurement pe-
riod (895 days) of A100 GPUs, four A100 GPUs were replaced due to
GPU’s failure to boot-up. In comparison, during the measurement
period (146 days) of the H100 GPUs, two GPUs were replaced due
to uncorrectable memory errors and row remapping failures. This
provides an additional support for the observed result that memory
is a resilience weak link on H100 GPUs, while the A100 GPUs are
more susceptible to errors from GPU hardware components.

4.2 GPU Error Propagation

This section describes results on both intra-GPU and inter-GPU error
propagation during the operational period for Delta’s A100 and H100
GPUs. Understanding GPU error propagation reveals resilience
weak links between GPU components. We break down the error-
recovery propagation into three categories for the GPU errors listed
in Table 1: (i) GPU memory, (ii) GPU hardware, and (iii) NVLink

We tested the NVLink to ensure that the NVLinks were enabled.
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interconnect, and estimate the propagation probabilities from GPU
error logs (see Section 3.2). The propagation paths in Figures 5 to 7
are highlighted with lightning signs that indicate the beginning of
each path. If two succeeding errors occur in close successions, i.e.,
a short propagation time, it suggests causality.

For GPU memory errors, we observed propagation primarily
on H100 GPUs, which coincides with our findings on worsened
memory resilience in Section 4.1. For GPU hardware and NVLink
interconnect errors, we observed error propagation paths primarily
on A100 GPUs because of the improved hardware resilience of H100
as discussed in Section 4.1.

4.2.1 GPUMemory-Error Propagation.Intra-GPU uncorrectable
memory error recovery paths are shown in Figure 5 for H100 GPUs
during the operational period. Memory error recovery path for
A100 GPUs were a subset shown in Figure 5. Hence, we only show
the memory propagation path for H100 GPUs.

Successful Error Recovery and Containment. As shown
in Figure 5, row remapping recovery (RRE) triggered by an un-
correctable ECC memory error has a success rate of 0.59 on H100
GPUs. For the 33% of the row remapping events that fail (RRF), the
GPU still contains the uncorrectable memory error because only
the affected user jobs were terminated, and only the faulty page was
offlined. Overall, considering both uncorrectable memory error re-
covery paths (RRE and error containment after an RRF), the impact
of uncorrectable memory errors was alleviated 92% of the time on
H100, while the GPU can remained operable. Such uninterrupted
operations were not achievable on previous-generation GPUs (e.g.,
Kepler in [11, 49] and Volta in [36]), as an uncorrectable memory
error would immediately cause user job interruption and put GPU
in an error state, necessitating a GPU reset to recover [33].

Unsuccessful Error Containment. The above uncorrectable
ECC memory error recovery or containment process can fail, re-
sulting in uncontained memory errors (Section 2.1). The error con-
tainment process failed 8% of the times on H100 GPUs during the
operational period (see Figure 5). Moreover, as informed by the
Delta SREs, uncontained memory errors can be highly bursty and
persistent and may spam the console logs, consuming useful com-
pute cycles and leaving the GPU inoperable. We did not observed
highly bursty and persistent uncontained memory error in A100 or
H100 GPUs during the operational period.

Overall, the propagation analysis suggests that the new memory
error recovery mechanisms on H100 GPUs alleviated impact of
uncorrectable memory errors 92% of the time. That said, Delta’s
H100 GPUs exhibited significantly more memory error recovery
propagations than A100 GPUs, highlighting the worsened mem-
ory resilience compared to A100s. In addition, the highly bursty
and persisting nature of uncontained memory errors can lead to
node/system operation disruptions, as we learned from Delta SREs.

4.2.2 GPU Hardware-Error Propagation. This section primarily
focuses on A100 because the H100 hardware (these components)
experienced almost no error during the operational period. Figure 6
shows error propagation across GPU hardware components in
A100 GPUs during the operational period. We found three dominant
GPU hardware error propagation paths, originating in (i) GSP (GPU
System Processor) errors, (if) PMU (Performance Management Unit)
SPIerrors, and (iii) GPU Fallen Off the Bus errors. We omit hardware
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Figure 6: Intra-GPU hardware error propagation probabili-
ties in A100 GPUs. Numbers on the edges show propagation
probabilities and average propagation time in seconds.

error propagation graphs for H100 GPUs as we only observed three
GSP errors and their propagation paths are similar to that of the
A100 GPUs.

GSP-related Errors. Error propagations that originate in GSP-
related errors are the most prominent among GPU hardware errors
(see Table 1) on A100 GPUs. A GSP error arises when the GSP
fails to respond to the remote procedure calls from the GPU driver.
Figure 6 shows that, with a probability of 0.99, GSP errors lead to
the recurrence of the same error or put the GPU in an inoperable
state. The remaining 0.01 (15 cases) of GSP errors caused PMU SPI
communication errors (see the follow-up description) that led to
user job failure, as depicted in Section 5. Our analysis addition-
ally shows that 99% of GSP errors appeared in isolation without a
preceding error.

GSP errors can be caused by either GSP firmware bugs [32] or
demanding workload. For example, Delta SREs observed that these
errors were highly correlated with heavy ML benchmarks, and
they suggested that GSP errors are high-impact errors whose recov-
ery requires manual node draining and reboots. Our propagation
analysis confirm that the GSP is a single point of failure on both
A100 GPUs in part because of their spontaneous nature and high
downstream impact (e.g., GPU hangs) on the GPU.

PMU SPI Errors. Communication errors with the performance
management unit (PMU) over the Serial Peripheral Interface (SPI),
known as PMU SPI errors, can cause performance management
issues (e.g., inability to change the core frequency). We observed
that such errors could lead to MMU errors with a probability of 0.88
(see Figure 6), ultimately leading to user job failures. The majority
of the rest of the PMU SPI errors resulted in another PMU SPI
error in close succession, leading to persisting error patterns. We
observed 77 occurrences of PMU SPI errors (see Table 1) with a 0.98
probability of leading to user job failures (see Table 2) on A100s.

GPU Fallen Off the Bus. GPU Fallen Off the Bus errors were
logged when the GPU driver could not reach the GPU over the
system bus. This error is an integration error often caused by a
loose GPU-motherboard connection or contact failure because of
thermal cycles [49]. Over 99% of the errors of this type lead to
similar errors in close successions and eventually put the GPU into
an error state.

Our GPU hardware error propagation analysis suggests that the
error detection and recovery of GSP, PMU, and the communication
interfaces (e.g., PMU SPI) need to be improved via duplications
and error-detection and correction mechanisms to prevent single
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Figure 7: NVLink intra-GPU and inter-GPU error propaga-
tion in A100 GPUs. Numbers on the edges show propagation
probabilities and average propagation time in seconds.

points of failure, as evident in A100 GPUs. In fact, AWS recom-
mends disabling GSP for stability over performance benefits [4].
By improving GSP hardware and driver software combined with a
tightly integrating CPU-GPU architecture, the H100 GPUs in the
GH200 Superchips significantly improve GPU hardware resilience
over the A100 GPUs. Notably, apart from three GSP errors, which
follow the same propagation paths as GSP errors in A100 GPUs,
we observed no other hardware error propagation paths on H100
GPUs.

4.2.3 NVLink Interconnect-Error Propagation. NVLink is an
GPU-to-GPU interconnect for communication and data exchanges.
An NVLink error can impact a single or multiple GPUs on the
same node, possibly rendering the entire multi-GPU compute pool
unavailable (see Figure 7). We observed both kinds of propagation
in our error logs on A100 GPUs during the operational period on
A100 GPUs.

NVLink Inter- and Intra-GPU Propagation. An NVLink er-
ror occurs when one or more NVLinks experience an error. Our
analysis showed that of the 1,922 NVLink errors, 42% propagated to
connected GPUs; of those errors, 17% involved three or more GPUs
of the same compute node. The rest of the 1,121 NVLink errors
did not propagate across GPUs. NVLink errors, like GPU hardware
errors, happen in isolation without preceding errors. On the same
GPU device, an NVLink error either leads to another NVLink error
soon after (with a probability of 0.38) or potentially leaves the faulty
GPU in an error state (with a probability of 0.61).

Although Delta SREs reported that most NVLink errors were
benign, we found that the probability of leading to user job failure
when encountered is 54% (43 cases) during the operational period
on A100 GPUs. Moreover, in two incidents, GPU resets are needed
to recover from critical NVLink errors, leading to over 2 hours of
node interruption, and, as with GPU hardware errors, we found no
preceding hardware errors before NVLink errors, making them less
predictable than memory-related errors.

We did not observe NVLink-related errors on H100 GPUs during
the operational period despite observing related non-error NVLink
events (e.g., link initialization). We additionally conducted NVLink
tests on an Delta-Al node to confirm that NVLinks are enabled and
fully functional. We conjecture that the improvement is due to both
NVLink hardware and driver upgrades and potential changes in
NVLink error logging mechanisms.
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Incident 1: GSP Error Caused User Job
Failure on A100

Incident 2: Contained Uncorrectable
Error Caused User Job Failure on H100

[scheduler][slurmctld][2024-11-
11T07:41:33] Job started in
‘ghx4' partition on ghesg3.
[JobId=134883]

[scheduler][slurmctld][2022-10-
11T06:59:19]

Job started in 'gpuAleex4’
partition on gpua@s8e.
[JobId=976760]

[gpuae8e] [kernel][2022-10-
11T08:23:52] Timeout waiting for
RPC from GSP. [ErrorCode=XID 119]

[scheduler][slurmctld][2022-10-
11708:23:52] Job completed with 11T720:23:29] Job completed with
error. [JobId=976760, error. [JobId=134883,

ExitStatus=1] Error ExitStatus=1] Error

[scheduler][slurmctld][2022-10- [ghe83][slurmctld][2024-11-
11T09:08:24] Node gpua@80 state 11T20:23:55] clean shutdown with
set to draining. force=no halt=no reboot=yes
[scheduler][slurmctld][2022-10-
12T08:21:36] Node gpua08e
rebooted.

[ghes83][kernel][2024-11-
11720:23:22]

Contained ECC: SM (@x1). RST: No,
D-RST: No [ErrorCode=XID 94]

[scheduler][slurmctld][2024-11-

[scheduler][slurmctld][2024-11-
11T20:25:34] Node gh@83 rebooted.

Recovery Recovery

Figure 8: Incidents in which GPU errors led to job failure.

4.3 Examples of Error Propagation to User Jobs

In this section, we show how measured errors relate to NVIDIA’s
measured DCGM GPU utilization metric, a step towards relating
GPU memory and hardware errors with their impact on the user
jobs. Figure 8 presents two example incidents.

Incident 1: A GSP error stalled GPU control functions and
rendered the GPU inoperable on an A100 GPU. Consequently, the
user job scheduled on that GPU failed. The GSP error required
the draining of the node and a full node reboot to recover, which
led to the draining of all pending user jobs on that node. From
the beginning of the node drain to the completion of the node
reboot, the total recovery time for this incident was 23 node hours
(09:08 AM to 08:21 AM the next day), during which the node was
unavailable. Figure 9a shows that the corresponding GPU utilization
dropped quickly following the error incident due to job failure. This
incident shows that a GPU error can significantly interrupt user
jobs and node availability.

Incident 2: In this incident, the H100 GPU running the user
job experienced an uncorrectable ECC memory error, which led
to an error containment event. The error containment event con-
tains the uncorrectable memory error by terminating the user’s job.
Subsequently, a node reboot is triggered to recover from this error,
resulting in a two minute node downtime. Figure 9b shows that
GPU utilization dropped as the user job was terminated. This inci-
dent shows that although an uncorrectable memory error might be
contained, it still results in user job termination and requires node
reboot to fully recover, resulting in unexpected node downtime.
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Figure 9: GPU utilization during GPU error incidents.
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Figure 10: Node unavailability time after GPU failures.

5 Propagation of Errors to Jobs

This section provides an in-depth analysis of job-level resilience
and associated GPU downtime.
A GPU error can lead to:

(1) Job Failure: A GPU error may not be handled by jobs, either
because the error itself is not contained or because there is a lack of
appropriate error-handling mechanisms. For example, GSP errors
lead to GPU failures and require node reboots. To recover from
GPU failures, jobs need to be re-executed from the beginning or
rolled back to the closest checkpoint.

(2) GPU and Node Downtime: Downtime can occur when GPUs
need to be reset or replaced by the operator, and no jobs can be
scheduled on the GPU and the corresponding node in the interim.

5.1 Result Highlights

Table 2 show the overall impact of hardware errors on applications.
In summary, we observe that:

(i) Except for MMU and NVLink errors, no other GPU errors
are handled by jobs, thus resulting in their failure. Depending on
the GPU type, the underlying cause of job failures differs. In the
case of A100 GPUs, hardware errors predominantly lead to job
failures, whereas memory errors are the primary cause of H100
GPUs. Therefore, there is a need to improve the resilience of un-
derlying hardware to minimize such failures. While checkpointing
is an option, checkpointing routines have a high overhead of up to
40% [29, 53, 54], including management, storage, and restore.

(ii) The overall availability per-GPU node is ~99.4% (correspond-
ing to 9 minutes downtime/day) and ~99.3% (corresponding to 10
minutes downtime/day) for A100 and H100 GPUs respectively. This
level of unavailability suggests that even if the rest of the infrastruc-
ture is highly available, current GPUs may not provide sufficient
availability to meet the demands of critical applications that require
greater than 3 9’s of availability (downtime of 1.4 mins/day). In
addition, we used emulation to project the impact of this availabil-
ity distribution at increased scales (for both node scale and job
duration) and found that significant overprovisioning of 5% would
be necessary to handle associated failures (as explained in further
detail in Section 5.4).

5.2 Job Statistics
During the characterization period, 1,420,278 user jobs were sub-
mitted to GPU nodes with a success rate of 87%. About 74% of user
jobs ran on a single GPU; 24% ran on 2-4 GPUs; and only 2% of
jobs used five or more GPUs.

Because of a lack of specific information on whether jobs were
ML-related, we estimated the percentage of ML user jobs based

on job submission names and the system modules/libraries im-
ported!?. For instance, user jobs with names containing model or
train were likely related to machine learning. We provide detailed
statistics on node hours used, durations for both job types, and
failure probabilities in Table 3. We find that across all job sizes, the
failure probability lies between 6-49%, indicating a lack of adequate
recovery mechanisms.

5.3 Job Failure Analysis

To understand job failure patterns, we first separated jobs into “Com-
pleted” and “GPU-Failed” depending on their completion status.
Based on that job categorization, we analyzed (i) the GPU errors
that were most likely lead to a job failure, and (ii) the potential
recovery strategies, such as checkpointing and exception handling.
Classifying Job Runs: We classified jobs based on their exit status
and proximity of job failure time to GPU error occurrence time. The
job exit status was obtained from the Slurm job scheduler logs (as
described in Section 3.1). We marked a job as “GPU-Failed” if a GPU
error occurred within a 20-second interval before job failure.!!
Correlating GPU Errors and Job Failures: We broke down all GPU-
Failed jobs by the specific GPU errors that were most likely to lead
to job failures. Table 2 provides probabilities of user job failures per
GPU error for the A100 and H100 GPUs. As any of the encountered
errors may have contributed to a job failure, we consider all GPU
errors that occurred within the 20-second interval to be responsible
for the failure.

Overall, other than NVLink and MMU errors, all GPU errors,
such as GSP RPC timeout and PMU failures, propagate (as discussed
in Section 4.2) and cause job failures. Based on previous analysis,
we note that hardware errors — such as GSP and PMU errors are
dominant in A100 GPUs, whereas memory errors are dominant in
H100 GPUs.

NVLink and MMU errors do not necessarily lead to job failures
because:

Dye to privacy restrictions, we could not access the job scripts for use in job
classification.

Note that we do not count “zombie” jobs, i.e. jobs that have failed but not terminated
by the Slurm scheduler in the analysis.

GPU # GPU-failed w85 Job Failure
2 Error Jobs Encountering Probability (%)
Given XID
A100 H100 | A100 H100 | A100 H100
31 MMU err. 3206 93 3543 126 90.48 73.80
74 NVL err. 43 0 80 0 53.75 -
122 | SPIPMU RPC failure 40 0 41 0 97.56 -
119 GSP RPC timeout 31 0 31 0 100.00 -
94 Contained ECC 5 5 5 5 100.00  100.00
48 GPU DBE 0 5 0 5 - 100.00
64 | Row remapping failed 0 3 0 3 - 100.00
63 | Row remapping event 0 2 0 2 - 100.00

Table 2: Distribution of GPU-failed jobs across the different
GPU error types for A100 and H100 GPUs. The failure prob-
ability is calculated as (# GPU-failed jobs encountering that
GPU error) / (# jobs encountering that GPU error). The to-
tal number of GPU-failed jobs was 3,359 during the 895-day
characterization period.
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GPU Count (%) Elapsed Time (Minutes) | Failed (%) GPU Hours (k)
Count Mean ‘ P99 ML  Non-ML
1 1,052,993 (74.140%) | 134.560 | 2859.677 129,395 (12.29%) | 641.9 1,949.14
2-4 337,637 (23.773%) 159.839 | 2880.117 40,610 (12.03%) | 810.4 2,749.00
5-8 13,907 (0.979%) 231.927 | 2880.316 4,469 (32.13%) 253.1 290.16
9-32 13,378 (0.942%) 221.636 | 2880.167 3,045 (22.76%) 307.5 844.40
33-64 1,375 (0.097%) 145.206 | 2880.017 608 (44.22%) 108.2  149.24
65-128 856 (0.060%) 320.185 | 2834.413 421 (49.18%) 15.1 442.70
129-256 | 110 (0.008%) 174.713 | 2041.312 7 (6.36%) 0.0 57.23
257+ 22(0.002%) 29.128 107.493 5(22.73%) 0.0 3.44

Table 3: Job distribution, elapsed time statistics (mean, P99),
failure count with percentage, and GPU hours divided into
ML and non-ML categories for various A100 and H100 GPU
configurations.

(1) For NVLink errors, the link or GPU may not be in use by any
user jobs (as discussed in Section 4.2)'2.

(2) For MMU errors, there can be application or library-level mask-
ing mechanisms. Besides hardware errors, MMU errors can also
occur if buggy user code makes illegal memory accesses that cannot
be mapped in the virtual-to-physical address space. Such errors can
be managed using appropriate application-level exception handlers.
Popular libraries and frameworks for machine learning [40-42]
have support for handling such exceptions by skipping the associ-
ated training iteration, albeit at the cost of model quality.

5.4 Impact of GPU Downtime on Jobs

While significant node hours might be lost because of wasted com-
pute time from failed jobs, additional node hours are also lost be-
cause of the time required to recover the impacted GPU node by
either resetting it or replacing it entirely. To reset the GPU node,
operators typically drain the node, i.e., wait for other jobs running
on the node to complete without accepting new jobs and then re-
boot. After the reboot, if the node successfully passes the health
check, the node reset is successful, and new jobs can be scheduled
on the GPU node. If the reset is unsuccessful, the node is marked
failed until the GPU is additionally tested and physically replaced, if
required. To calculate the average system downtime, we estimated
the total time when the GPU was unavailable, which primarily in-
cluded the drain and reboot time. Figure 10 shows the distribution
of the unavailable time across the entire characterization duration.
Overall, we found that the expected time to service the failed node
was 0.88 hours for A100 GPUs and 2.2 hours for H100 GPUs. A total
of 5,700 node hours were lost to GPU downtime. Using the node
downtime and failure distributions, we can estimate the availability
of the GPU node as % equal to 99.4% and 99.3% for A100
and H100 GPUs respectively 3.

Projected impact of availability on long-running and large-scale jobs:
We provide error and recovery statistics in previous sections; we
also attempted to project how those distributions would affect jobs
running on a different system. To do so, we built a simulation tool
driven by our analysis. The parameters of the simulation tool can
be varied based on the scenario under consideration.

2Based on our understanding, NVLink and memory errors can occur even when no
workload is running [15].

13The node MTTF number is estimated from the GPU’s MTBE, for which we conser-
vatively assume that all critical GPU errors lead to node interruption.
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Specifically, we simulate the case in which jobs (such as ML
training) use the entire set of 608 H100 GPUs and run for a du-
ration of 1 month. These jobs require all GPUs to be operational
to make progress, and frequent node failures can lead to resource
unavailability and slower job progress. When such failures occur,
additional provisioning of GPU resources is necessary to allow the
job to resume on alternate nodes while the failed nodes recover.

The simulation uses a discrete time event simulation with node
failure probabilities derived from our prior analysis. The recovery
time after a failure is dependent on variables such as checkpoint load
time and availability of spare GPUs. To account for the variability
introduced by these factors, we parameterize recovery time and
perform a parameter sweep. For a training job with 608 GPUs and
recovery time of 2.2 hours, the required overprovisioning is 5%: i.e.,
31 additional GPUs are needed beyond the original 608 to maintain
availability of 99.9% at the job level. While at first glance, such
overprovisioning would appear to be a small cost, for the above
example, it would cost over $1 million per month for a 1000 node
cluster (our analysis is based on AWS H100 GPU rental rates [9]).
However, if the recovery time is reduced to 5 minutes, downtime
decreases significantly, and the required overprovisioning drops to
2%, a 2.5 reduction. This highlights the criticality of minimizing
recovery time to reduce downtime for large and long-running jobs.

In summary, every GPU node in the system has “two nines” of
availability. While such availability does not significantly impact
small jobs that use recovery mechanisms, large jobs can face signifi-
cant downtime. Significant overprovisioning of up to 5% is required
to eliminate such downtime.

6 Related Work

Existing work has analyzed GPU resilience at the microarchitecture,
system, and application levels. This paper extends previous work
via comprehensive analyses of GPU error characteristics, failure
propagation, and their impact on user jobs.

Microarchitecture-level GPU Resilience. Previous research [20, 44,
52, 57] has primarily focused on the resilience of individual GPUs at
the microarchitecture and software levels, e.g., for older generations
such as the NVIDIA G80 [6]. However, the earlier work did not
evaluate the resiliency of modern GPUs in large-scale HPC settings.

System-level GPU Resilience in HPC Settings. Existing studies have
analyzed the resilience of GPUs in HPC systems [7, 10, 16, 19, 24],
for example, the NVIDIA Tesla K20X GPUs in various supercom-
puters [11, 17, 18, 30, 31, 37, 49, 50]. Studies of the Blue Waters,
Titan, and Summit supercomputers [11, 24, 30, 31, 36] have exam-
ined node failures and GPU error characteristics. However, such
work either studied previous generations of GPUs with a focus on
GPU memory errors, or focus on cluster-level resilience instead of
GPU resilience. Our work complements those efforts by providing
resilience insights into the latest generation of GPUs, focusing on
a broader range of components.

Application-level GPU Resilience in Data-centers and Deep Learn-
ing Workloads. Recent research has focused on understanding GPU
power usage [31], GPU component-level failures [23], software-
level error handling [14, 27, 28], and the impact of GPU software er-
ror propagation on GPGPU applications [3, 26, 43, 55] and emerging
GPU workloads such as convolutional neural networks (CNNs) [8,
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12], large language models (LLMs) [13, 22], and safety-critical ap-
plications [38, 45].

7 Discussion

Justification of Analyzing Errors: Data-driven HPC resilience
characterization studies analyze operational data on system/appli-
cation errors to provide insights into system resilience [10, 11, 17,
18, 30, 31, 36, 37, 49, 50]. While in those studies, the error rate is
used as the key metric to quantify resilience, some [5, 48] argue
that fault rate is a more appropriate metric.

Errors represent the manifestation of faults and have direct down-
stream consequences, such as triggering of recovery mechanisms,
application interruptions, or system-wide outages (SWOs). While
a fault may result in multiple errors, it is the resulting errors that
the recovery mechanisms must address to maintain system health.
These errors and their recovery process directly impact system
health, performance, and availability. Thus, SREs prioritize errors
over faults. Hence, like many others who study operational data,
we chose to study errors.

Potential errors in NVIDIA driver logging: A potential source
of error is the NVIDIA driver’s inconsistent logging of different XID
errors. The NVIDIA driver is proprietary software whose source
code is not publicly available, making exact specifications of its
error-logging mechanism unverifiable. We attempted to minimize
the impact of the inconsistency, to the best of our ability, through
consistent log data collection and error coalescing.

8 Conclusion

This paper describes the results of a resilience study of Delta, which
consists of 1,056 NVIDIA A100 and H100 GPUs. The study used
up to 2.5 years of operational data on GPU errors collected across
those GPUs. We assessed the resilience of GPU components, er-
ror propagation paths, and impact on jobs and compared the two
generations of GPUs. In future work, we will extend the analysis
presented to other accelerators and larger-scale systems, running
more complex HPC and ML workloads.
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