
Queue Management for SLO-Oriented Large
Language Model Serving

Archit Patke
University of Illinois at
Urbana-Champaign
Urbana, Illinois, USA
apatke@illinois.edu

Dhemath Reddy
University of Illinois at
Urbana-Champaign
Urbana, Illinois, USA
dhemath2@illinois.edu

Saurabh Jha
IBM Research

Yorktown Heights, New York, USA
Saurabh.Jha@ibm.com

Haoran Qiu
University of Illinois at
Urbana-Champaign
Urbana, Illinois, USA
haoranq4@illinois.edu

Christian Pinto
IBM Research
Dublin, Ireland

Christian.Pinto@ibm.com

Chandra Narayanaswami
IBM Research

Yorktown Heights, New York, USA
chandras@us.ibm.com

Zbigniew Kalbarczyk
University of Illinois at
Urbana-Champaign
Urbana, Illinois, USA
kalbarcz@illinois.edu

Ravishankar Iyer
University of Illinois at
Urbana-Champaign
Urbana, Illinois, USA
rkiyer@illinois.edu

ABSTRACT
Large language model (LLM) serving is becoming an increas-
ingly critical workload for cloud providers. Existing LLM
serving systems focus on interactive requests, such as chat-
bots and coding assistants, with tight latency SLO require-
ments. However, when such systems execute batch requests
that have relaxed SLOs along with interactive requests, it
leads to poor multiplexing and inefficient resource utiliza-
tion. To address these challenges, we propose QLM, a queue
management system for LLM serving. QLM maintains batch
and interactive requests across different models and SLOs
in a request queue. Optimal ordering of the request queue
is critical to maintain SLOs while ensuring high resource
utilization. To generate this optimal ordering, QLM uses a
Request Waiting Time (RWT) Estimator that estimates the
waiting times for requests in the request queue. These es-
timates are used by a global scheduler to orchestrate LLM
Serving Operations (LSOs) such as request pulling, request
eviction, load balancing, and model swapping. Evaluation on
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SoCC ’24, November 20–22,2024, Redmond, WA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1286-9/24/11.
https://doi.org/10.1145/3698038.3698523

heterogeneous GPU devices andmodels with real-world LLM
serving dataset shows that QLM improves SLO attainment
by 40–90% and throughput by 20–400% while maintaining or
improving device utilization compared to other state-of-the-
art LLM serving systems. QLM’s evaluation is based on the
production requirements of a cloud provider. QLM is publicly
available at https://www.github.com/QLM-project/QLM.

CCS CONCEPTS
• Computing methodologies→Machine learning; Dis-
tributed algorithms; • Computer systems organization
→Dependable and fault-tolerant systems andnetworks.

KEYWORDS
large language models, machine learning inference, queuing
ACM Reference Format:
Archit Patke, Dhemath Reddy, Saurabh Jha, Haoran Qiu, Christian
Pinto, Chandra Narayanaswami, Zbigniew Kalbarczyk, and Rav-
ishankar Iyer. 2024. Queue Management for SLO-Oriented Large
Language Model Serving. In ACM Symposium on Cloud Computing
(SoCC ’24), November 20–22, 2024, Redmond, WA, USA. ACM, New
York, NY, USA, 18 pages. https://doi.org/10.1145/3698038.3698523

1 INTRODUCTION
Motivation. Large language models (LLMs) such as OpenAI
GPT-4 and Google Gemini have enabled novel capabilities in
a wide range of AI applications [3, 50, 52] such as chatbots
and coding assistants. These base models such as GPT4 are

https://doi.org/10.1145/3698038.3698523
https://www.github.com/QLM-project/QLM
https://doi.org/10.1145/3698038.3698523

SoCC ’24, November 20–22,2024, Redmond, WA, USA A. Patke et al.

further fine-tuned to support specialized tasks such as copy-
writing, financial planning, etc. [33]. Consequently, serving
multiple models for enterprise and consumer applications
with latency-oriented service-level objectives (SLOs) has be-
come increasingly critical [19, 35, 48].
Previous work in this area [16, 20, 23, 31, 36, 43, 49, 51]

largely focused on serving interactive requests, such as chat-
bots, with tight latency SLO requirements. However, the
recent explosive growth of LLM applications, has generated
a need to support batch LLM queries with SLO values ranging
from minutes to hours for tasks such as data wrangling [29],
document processing [18], and model fine-tuning [44].

Given the broader range of SLO requirements and the use
of multiple models, maintaining request queues is beneficial.
Conceptually, when resources are limited, requests with re-
laxed SLOs can be kept at the back of the request queue and
do not need to be executed immediately, while requests with
tight SLOs can be kept ahead in the queue to ensure immedi-
ate execution and prevent head-of-line (HOL) blocking. Hence,
queue ordering becomes an important decision-making prob-
lem for SLO-oriented LLM serving.
Previous work in SLO-oriented serving has largely fo-

cused on traditional DNN serving workloads such as CNNs
and RNNs [15, 41], where the queue ordering decisions are
made by systems such as Clockwork [13], INFaaS [39], and
SHEPHERD [54]. Such systems leverage the deterministic ex-
ecution times of DNN workloads to estimate queuing times
and enable optimal ordering decisions that would maintain
request SLOs. However, such systems cannot be easily ap-
plied to LLM serving workloads because the execution time
per request is non-deterministic as the number of output
tokens are unknown apriori. Using these system’s assump-
tion of fixed size batches with deterministic execution times
for scheduling decisions leads to sub-optimal scenarios, de-
scribed below.
First, previously proposed serving systems are unable to

effectively multiplex interactive and batch requests on the
same serving instance. We find that the queue waiting time
in LLM serving is lower than estimate used by the scheduler
in such systems as shown in Figure 1 (left). As these systems
generate a higher than actual estimate of the total queuing
time, they allocate batch and interactive requests on separate
serving instances, even in scenarios where allocation on the
same instance would suffice to meet SLOs.
Second, previously proposed systems are unable to ef-

fectively multiplex different models on the same serving
instance. Similar to the first scenario, systems such as Clock-
work [13] overestimate the time required to serve a single
model and prefer to allocate independent instances for each
model to preserve SLOs. Others such as SHEPHERD [54], al-
together forgo serving multiple models on the same instance

0 500 1000 1500

Request Queue Size

0

500

1000

1500

W
a

it
in

g
T

im
e

(s
)

Previous System Estimate
Actual Waiting Time

Single Multi

Scenario

0

2

4

xG
P

U
S

R
eq

u
ir

ed

Previous Systems
QLM

Figure 1: Previously proposed SLO-oriented serving
systems overestimate queue waiting time leading to
suboptimal resource usage. (Left) Estimated waiting
time when requests are run with Llama-70B on A100
GPUs with vLLM. (Right) Number of GPUs required
to maintain 20s time-to-first-token (TTFT) SLO with
previous systems vs QLM in single and multi-model
scenarios.

vLLM

Scenario 1: Batch and
Interactive Requests

Scenario 2: Multi-model
Batch Requests

vLLMRequest
Eviction

Running
Requests Swap

Batch Interactive

Request Groups

Model
Registry

Model 1 Model 2

Figure 2: QLM uses request groups and LLM Serving
Operations (LSOs) such as request eviction tominimize
resource requirement. Previously proposed systems
would use four vLLM instances (compared to two for
QLM) due to limitations described in Figure 1.

due to the high cost of model swapping relative to inference
times.
Our Work. To address these limitations, we propose QLM,
a queue management system for LLM serving that maxi-
mizes SLO attainment while maintaining high throughput.
At the core of QLM is the Request Waiting Time (RWT) Es-
timator (described in Section 6) that estimates the waiting
times for requests in the request queue. We observe that as
the queue size grows larger, statistical effects of continuous
batching [51] in LLM serving allows us to create a tighter
bound on waiting time. Additionally, we empirically validate
and provide a proof for applicability of the RWT estimator.
QLM leverages this improved estimation to allow for better
utilization and decrease resource cost by making closer to
optimal request queue reordering decisions.

Queue Management for SLO-Oriented Large Language Model Serving SoCC ’24, November 20–22,2024, Redmond, WA, USA

To order requests in the queue, QLM, similar to SHEP-
HERD, uses the abstraction of request groups (described in
Section 4). Each request group is a collection of requests that
have relatively homogeneous performance requirements (e.g.
similar SLOs and model). QLM places these request groups
in virtual queues that determine the order in which requests
are consumed by the LLM serving instances. In the LLM
serving context, in addition to the benefits of scalability and
predictability found in DNN serving, request groups are a
useful abstraction for model swapping. As decision mak-
ing is made at the per-request group level, the total amount
of swapping is minimized and throughput is improved as
depicted in Figure 2 (Scenario 2).
Finally, QLM uses a Global Scheduler (described in Sec-

tion 7) that utilizes the waiting time estimates of request
groups to create an optimal ordering and assignment of re-
quest groups onto the virtual queues to maximize SLO at-
tainment. The virtual queue ordering is used by four basic
LLM Serving Operations (LSOs) to manage the request queue
(see Section 5 for details): (1) Request Pulling from the global
waiting queue into the running batch in the GPU, (2) Request
Eviction from the running batch back into the waiting queue,
(3) Model Swapping from CPU to GPU memory, and (4) Load
Balancing across multiple LLM model instances. For exam-
ple, request eviction allows serving batch and interactive
requests on the same LLM serving instance and prevents
HOL blocking for interactive requests as shown in Figure 2
(Scenario 1).
Results.We demonstrate QLM on vLLM [20] as the backend
LLM-serving system. We evaluate QLM on three popular
LLMs of varying sizes (i.e., Mistral-7B [17], Vicuna-13B [5],
and Llama-70B [47]) on GPU clusters with NVIDIA A10 and
A100 GPUs. We adopt workloads from a real-world LLM
dataset: ShareGPT [46] using setups derived from our pro-
duction requirements. Our experiments demonstrate the fol-
lowing major improvements with QLM:
(1) SLO Attainment: Depending on the arrival rate, QLM
achieves 40–90% higher SLO attainment compared to the
vanilla vLLM serving system and 50–90% higher SLO at-
tainment compared to traditional ML serving systems like
SHEPHERD.
(2) Request Throughput: QLM improves the request through-
put in a multi-model serving system by 400% on average
and in a single-model serving system by 20% on average
compared to other LLM serving systems.
(3) LSO Ablation Study: QLM demonstrates that all LSOs
contribute to SLO attainment and throughput improvement.
Notably, we find that model swapping improves through-
put by 300% in multi-model serving, and request eviction
improves SLO attainment by 80% in single-model serving.
QLM has been merged into an internal production LLM
routing service.

2 BACKGROUND
2.1 LLM Inference
Inference Primer. An inference process starts from a re-
quest (prompt) with a list of input tokens (𝑥1, . . . , 𝑥𝑛). The
LLM generates a list of output tokens (𝑥𝑛+1, . . . , 𝑥𝑛+𝑇). Due
to the autoregressive pattern, the LLM can only generate new
tokens one by one, and the generation process of each new
token depends on all the previous tokens in that sequence,
specifically their key and value vectors. In this sequential
generation process, the key and value vectors of existing
tokens are cached for generating future tokens, known as
KV cache.
Therefore, given a LLM request prompt, the generation

computation can be decomposed into two phases: (1) A pre-
fill stage takes the whole user prompt (𝑥1, . . . , 𝑥𝑛) as in-
put and computes the probability of the first output token
𝑃 (𝑥𝑛+1 |𝑥1, . . . , 𝑥𝑛). (2) A decoding stage (autoregressive gen-
eration) generates the remaining output tokens sequentially.
At iteration 𝑡 , the model takes one token 𝑥𝑛+𝑡 as input and
computes the probability 𝑃 (𝑥𝑛+𝑡+1 |𝑥1, . . . , 𝑥𝑛+𝑡) with the key
vectors 𝑘1, . . . , 𝑘𝑛+𝑡 and value vectors 𝑣1, . . . , 𝑣𝑛+𝑡 . This phase
completes when an end-of-sequence (<eos>) token is emit-
ted.
Continuous Batching. During LLM inference, the decod-
ing stage is memory-bound, as loading model weights from
memory takes longer than computation. Therefore, state-
of-the-art LLM serving systems like vLLM [20], Orca [51],
Tensor-RT [31] and TGI [16] employ continuous batching
with iterative scheduling to enable dynamic addition of re-
quests to a batch as soon as others have finished generation.
PagedAttention. Static allocation of the KV cache can re-
sult in significant memory waste as the KV cache grows
dynamically during the decoding stage. PagedAttention [20]
introduces the idea of managing the KV cache, like OS mem-
ory, via pages and enabling dynamic allocation. Such dy-
namic allocation prevents fragmentation and enables nearly
100% utilization of GPUmemory and furthers throughput im-
provement when combined with continuous batching [20].

2.2 LLM Serving Systems
User-facing applications such as chatbots, log processing, and
recommenders have specific latency SLO requirements [4,
19, 35, 37]. When interacting with LLMs, each application
generates requests that consist of the input prompts and asso-
ciated metadata (e.g., model type and SLO value) to the LLM
serving system. For example, chatbots require requests to
complete by a deadline (e.g., p99 time to first token (TTFT)
< 20s [12]), and batch jobs like document processing have a
more relaxed SLO in the order of minutes to hours. Requests
may also need to be served by multiple fine-tuned models
specialized for various tasks. For example, Code Llama [40]

SoCC ’24, November 20–22,2024, Redmond, WA, USA A. Patke et al.

0 2000

Position in Queue

0

200

400

W
a

it
in

g
T

im
e

(N
or

m
.)

Vicuna-13B
Mistral-7B

Llama-70B

Figure 3: Requests have pre-
dictable waiting times in a con-
tinuous batching system.

A10,7B
A100,7B

A100,13B

10−2

10−1

100

101

H
O

L
B

lo
ck

in
g

T
im

e vLLM Eviction

Figure 4: Forced request eviction leads to re-
duction in head-of-line (HOL) blocking time.

A10,7B

A100,7B

A100,13B

1.0

1.5

2.0

2.5

Q
u

eu
e

D
ra

in
T

im
e

(N
or

m
.)

EDF Oracle

Figure 5: Model swapping and
request pulling can jointly de-
crease queue drain time.

is fine-tuned for coding assistance, and Llama-chat [47] is
fine-tuned for chatbots. Maintaining a standalone LLM serv-
ing system for each of these models or SLO types can be
expensive, and they often have to be multiplexed together
to share the same serving system [6, 21, 23, 42]. Multiplex-
ing batch and interactive requests across various models
with limited resources leads to formation of request queues,
and managing these queues is critical to comply with SLO
requirements.

2.3 QLM Definitions
Before we present the motivation and characterization study,
below are definitions of the terms that we use.

Definition 2.1. Request: Each request consists of the prompt
(i.e., input tokens) and its associated metadata (e.g., model
type). Requests arrive at varying rates and burstiness, leading
to request queues with dynamically changing sizes.

Definition 2.2. SLO: Each request arrives with a service-
level objective (SLO) value that enforces the time to first
token (TTFT) for the request. While QLM primarily focuses
on TTFT, it can be paired with another system such as An-
des [25] to also maintain inter-token latency (ITL).

Definition 2.3. LLM Serving Instance: An LLM serving sys-
tem1 is capable of hosting LLM models by providing the
necessary infrastructure and resources to load the models
into memory and respond to requests. QLM is compatible
with existing LLM serving systems such as vLLM [20] and
TGI [16]. An LLM serving instance is composed of the LLM
serving system and an LLM model that is being served.
1The difference between an LLM serving system and an LLM serving in-
stance is similar to JAVA classes and objects. For example, vLLM is an
LLM serving system while vLLM with a loaded model like Llama 70B is an
instance of the LLM serving system.

2.4 Motivation and Characterization
To enable SLO-oriented LLM serving, it is critical to under-
stand (1) the impact of LLM autoregressive patterns on the
request waiting time, (2) the performance implications of
queuing batch and interactive requests, and (3) the perfor-
mance implications of queuing multi-model batch requests.
We characterize these scenarios with a state-of-the-art

LLM serving system, vLLM [20], to motivate the design of
QLM. We use ShareGPT [46] traces to evaluate the system.
We present three key insights below.
Insight #1: Waiting times in long request queues can be
accurately estimated analytically. Recall from Figure 1
that incorrectly estimating waiting times can lead to resource
waste. Therefore, we attempt to build an accurate queue
waiting time estimator.

While the completion time for individual requests in LLM
inference can vary widely, the average waiting time for a
request in a long queue is predictable. Due to the statistical
averaging effects resulting from a large number of requests
(as detailed in Appendix A.1), the waiting time can be esti-
mated by dividing the total number of output tokens for the
pending requests by the token generation throughput. The
total number of output tokens adheres to a Normal distribu-
tion, in accordance with the Central Limit Theorem, since
individual requests are independent of each other

Figure 3 illustrates this linear relationship betweenwaiting
time and queue position when serving requests for three
varying-sized LLMs on NVIDIA A100 GPUs. Additionally,
we find that the estimator is highly accurate with a coefficient
of determination (𝑅2) of 0.99 (out of 1.0).
Insight #2:HOL blocking times due to continuous batch-
ing can be in the order of tens of seconds. The straight-
forward way to prioritize interactive requests over batch
requests on the same LLM serving instance is by placing
them at the front of the waiting queue. However, request
placement in the waiting queue may not be sufficient for

Queue Management for SLO-Oriented Large Language Model Serving SoCC ’24, November 20–22,2024, Redmond, WA, USA

immediate execution due to the lack of available GPU mem-
ory, causing head-of-line (HOL) blocking. Therefore, in such
scenarios, evicting batch requests from the GPU is required.
To minimize the cost of eviction, we can preserve the KV
cache of batch requests, allowing execution to resume from
the last decoding iteration.

Figure 4 illustrates the HOL blocking time when run with
a mixed workload comprising interactive and batch requests.
In the absence of request eviction, the HOL blocking time
can be in the order of several seconds, which can lead to
violation of latency SLOs for interactive requests. However,
request eviction significantly reduces the waiting time be-
cause interactive requests only need to wait for a single
decoding iteration before they can be scheduled, resulting
in a 100–1000× reduction in waiting time.
Insight #3: Policies such as Earliest Deadline First (EDF)
are insufficient to eliminate HOL blocking from model
swapping. The optimal request pulling strategy to maximize
the number of requests that satisfy SLOs is Earliest Deadline
First (EDF) scheduling. However, this assumes that the model
swapping cost is negligible. Frequent model swaps can happen
(similar to thrashing) if multiple models are served to time
share the same GPU devices, leading to SLO violations due
to longer completion times to drain the queue and a drop
in throughput. For example, consider the case illustrated in
Figure 5. Requests with varying SLOs arrive in the queue,
and they are placed by an EDF policy, causing multiple model
swaps and substantially higher time to drain the entire re-
quest queue. Specifically, we find that across models and
GPUs, the time required to serve all requests in the queue
(i.e., the queue drain time) is substantially higher for the EDF
policy compared to an Oracle policy that groups requests
from the same model together to prevent the overhead of
repetitive model swaps.

3 QLM DESIGN OVERVIEW
QLM aims to maximize latency SLO satisfaction in LLM
serving workloads. To do so, QLM manages a global request
queue and orchestrates multiple LLM Serving Operations
(LSOs) to reorder and drain the global queue.

3.1 Lifecycle of a Request in QLM
To explain the design of QLM (as shown in Figure 6), we
first walk through the lifecycle of a request generated from
applications to completion. LLM-augmented applications
generate requests that are received at the QLM API gateway.
These requests are added to a global queue where they wait
until being served. To prevent the global queue from being a
single point of failure, it is implemented with a distributed
message broker such as RabbitMQ [38] that provides the
requisite fault tolerance and consistency properties.

Applications Global Queue

RabbitMQ

RWT
Estimator

Analytical
Model

Linear
Program

Global
Scheduler

LLM Serving
Operations

QLM Control Plane

LLM Serving Instances

Virtual Queues

Request Groups

State Read

Detect SLO Violation

Reordering

Instance 1

Q
LM

A

ge
nt

s

Instance 2

Instance 3
Control Path Data Path

Request Group
Creation

LSO Actions

Figure 6: Overview of QLM.

Formation of Request Groups. Every incoming request
is grouped with other requests that share common perfor-
mance characteristics (such as model type, SLO value, and
token distribution) to form Request Groups. This converts the
complexity of the optimization problem from per-request
level to per-request-group level. By doing so, it alleviates
the scalability challenges and lowers optimization overheads.
Additionally, request groups are a useful abstraction in the
multi-model serving case as described in Section 2.4. Request
grouping criteria and details are described in Section 4.
Assigning Request Groups to Virtual Queues. Requests
in a request group are then assigned to a Virtual Queue, rep-
resenting a waiting queue for an LLM serving instance in the
cluster. The introduction of virtual queues creates a common
abstraction for setting the actions of backend LLM Serving
Operations (LSOs) such as request pulling, request eviction,
load balancing, and model swapping. The ordering of the
request groups in a virtual queue determines the execution
ordering of the requests on the corresponding LLM serving
instance. We refer readers to Section 4 for virtual queue for-
mation and Section 5 for the translation from virtual queue
ordering to LSO actions.
Virtual Queue Reordering for SLO Attainment Maxi-
mization. While requests are assigned to request groups in
a first-come-first-serve manner, request groups in a virtual
queue are reordered to maximize the SLO attainment for all
requests being served. At the core of SLO attainment max-
imization are QLM’s request waiting time (RWT) estimator
(see Section 6) and global scheduler (see Section 7).
Request Execution. Each request, when being moved to
the head of the virtual queue, will be executed on the LLM
serving instance, and the output will be returned to the ap-
plication. This completes the lifecycle of a request.

SoCC ’24, November 20–22,2024, Redmond, WA, USA A. Patke et al.

We illustrate the rationale of QLM’s design choices and
workflow in the next section (Section 3.2).

3.2 QLM Design Principles
We highlight the major design principles underpinning QLM,
derived from large-scale production LLM serving workload
requirements at a major cloud provider.
Design Principle #1: Scaling to a high request arrival
rate and burstiness. QLM must be able to handle a high
volume of requests for SLO attainment without the overhead
that compromises the serving throughput. Existing model-
serving frameworks that leverage optimization techniques
such as linear programming have exponential or cubical
complexity, which limits the scalability to larger workloads
and longer queues. QLM instead introduces request groups
to reduce the input space of the optimization solvers, thus
lowering the computational overhead and enabling scalabil-
ity.
Design Principle #2: Handling multiple LSOs with in-
ter dependencies. To attain model-serving latency SLOs,
it is critical to translate the latency SLO to the appropri-
ate backend LSO actions. QLM models these complex inter-
relationships with a two-step approach. First, virtual queues
enable the necessary abstraction to enable actions for multi-
ple backend LSOs. Second, the global scheduler models the
impact of ordering on multiple LSOs with a linear program-
ming solver. We specifically prefer a linear programming
solver over other optimization methods because it systemat-
ically considers various constraints introduced by multiple
LSOs, SLO constraints, and waiting time estimates from the
RWT estimator.
Design Principle #3: Handling heterogeneous models
and hardware device configurations. LLM serving work-
loads consist of diverse model types with vastly different
computational requirements, SLOs, and token length dis-
tributions. Hardware device configurations are also hetero-
geneous in terms of computing power, GPU memory ca-
pacity, and GPU-CPU memory bandwidth. To efficiently
map LLM requests to the appropriate hardware resources,
QLM’s global scheduler has to consider each device’s comput-
ing power, memory capacity, and memory bandwidth. The
RWT estimator estimates this impact of heterogeneity for the
global scheduler. The profiling costs for the RWT estimator
are minimal, only a single batch run for a given combination
of request group and GPU device is needed. Hence, QLM
does not require significant training when adding new LLM
models or GPU devices into the serving cluster.

Algorithm 1 Request Group Creation
1: 𝑔𝑟𝑜𝑢𝑝𝑠 ← 𝑘𝑀𝑒𝑎𝑛𝑠𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔(𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠)
2: for 𝑖 ← 1 to 𝑙𝑒𝑛𝑔𝑡ℎ(𝑔𝑟𝑜𝑢𝑝𝑠) do
3: if 𝑔𝑟𝑜𝑢𝑝𝑠 [𝑖] .𝑠𝑖𝑧𝑒 () > 𝑎𝑣𝑔_𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 × 𝛿 then
4: 𝑛𝑒𝑤𝐺𝑟𝑜𝑢𝑝𝑠 ← 𝑔𝑟𝑜𝑢𝑝𝑠 [𝑖] .𝑠𝑝𝑙𝑖𝑡𝐻𝑎𝑙 𝑓 ()
5: 𝑔𝑟𝑜𝑢𝑝𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑛𝑒𝑤𝐺𝑟𝑜𝑢𝑝𝑠)
6: end if
7: end for

4 REQUEST GROUPS AND VIRTUAL
QUEUES

In this section, we describe the concept of virtual queues and
the process of classifying LLM requests into request groups
and assigning request groups to virtual queues.

Definition 4.1. Request Group: Each request group is a col-
lection of multiple requests that are relatively homogeneous,
i.e., sharing similar performance demand or requirement
characteristics. We identify that input/output token distribu-
tions, model type, and SLO values are sufficient for the RWT
estimator (as explained in Section 6).

Definition 4.2. Virtual Queues: Each virtual queue is a se-
quence of request groups that denotes the relative order in
which requests will be served. There is a one-to-one mapping
between an LLM serving instance and a virtual queue.

By creating the abstraction of request groups and virtual
queues, the ordering of request groups in a virtual queue
allows QLM to configure actions for multiple downstream
LSOs to attain latency SLOs for the LLM-serving requests in
a scalable manner (described in Section 5).
Request Group Creation. Request groups are created in
two steps: (i) clustering similar requests based on Def. 4.1,
and (ii) splitting large request groups. Algorithm 1 describes
the request group creation process. The parameters identified
for the request grouping include model types, input/output
token distribution, and SLO values. Grouped requests based
on such parameters exhibit predictable request completion
time distribution (compared to that of each individual re-
quest) as explained in Section 6. Additionally, we also limit
the size of each request group to a small multiple (𝛿) of batch
size. We refer the reader to Section 8.3 for the trade-off anal-
ysis between overhead and decision-making granularity: (1)
Larger request groups would decrease the number of request
groups and thus the overhead of the global scheduler; (2)
However, restricting the size of request groups is beneficial
as it allows for more fine-grained decisions. Since requests
within a request group are relatively homogeneous, QLM
treats the ordering of the requests within a group using a

Queue Management for SLO-Oriented Large Language Model Serving SoCC ’24, November 20–22,2024, Redmond, WA, USA

first-come-first-serve (FCFS) policy. Request groups are de-
queued from the virtual queue when all requests complete
execution.
Handling New Incoming Requests. As new requests join
the global queue, they are classified into the existing request
groups, and the RWT estimator calculation is triggered to
find out whether any SLOs are being violated. Upon any SLO
violation, the global scheduler is called to reorder the request
groups in the virtual queues to maximize SLO attainment
given the current states (estimations).
Fault Tolerance in Queue Management. QLM only stores
a single replica of the requests and their metadata in the
global queue, which avoids the need to maintain consis-
tency between multiple queues. The global queue is imple-
mented using a distributed message queue broker such as
RabbitMQ [38] that provides the necessary replication, fault
tolerance, and persistence mechanisms. The data structure
that implements virtual queues records orderings of subsets
of requests in the global queue. These virtual queues are
implemented as lightweight data structures that maintain
pointers or references to the actual requests stored in the
global queue. By using virtual queues, QLM can achieve the
following: (1) Fault Isolation: If an LLM serving instance fails,
only the corresponding virtual queue is affected, and the
remaining virtual queues can continue processing requests
without interruption. Request groups from the lost virtual
queue are assigned to other virtual queues using the global
scheduler. (2)Consistency: Since the actual requests are stored
in the global queue, virtual queues can be reconstructed or
reassigned without compromising the consistency of the
request data.

5 LLM SERVING OPERATIONS
The LLM serving instances serve requests from the corre-
sponding virtual queue and execute backend LSO actions
when necessary. The LSOs by themselves are merely action
actuators, and the intelligence required to configure when
and which action to set comes from the virtual queue or-
dering set by the global scheduler (as described in Section
7).

Fig. 7 shows the four basic LSOs that QLM currently
supports. A QLM agent resident on each LLM serving in-
stance monitors the virtual queue ordering and converts it
into LSO actions. When the virtual queue state changes or
new requests are added, QLM agents initiate request pulling
and load balancing. Similarly, when the head request group
changes, the QLM agent initiates request eviction. Model
swapping is initiated by the QLM agent for models at the
head of the virtual queue. Each of these LSOs modifies the
internal state of the LLM serving instance, which includes
the running batch of requests, KV cache store, and model

Request
Pulling

GPU Device &
Memory

CPU Memory &
Disk Storage

Model Model
Swapping

Request
Eviction

KV Cache

Running
Batch

QLM Agent 1

KV Cache
Store

LLM Model
Registry

…

QLM Agent 2

ModelAgent 2
Virtual Queue

Agent 1
Virtual Queue

Load
Balancing

Figure 7: Basic LLM serving operations (LSOs) for an
LLM-serving instance that a QLM agent manages.

weights. Below, we describe each of these LSOs in detail and
their action setup based on the virtual queue ordering.
Request Pulling (1 in Fig. 7). Request pulling refers to the
operation that dequeues the requests in the virtual queue
using a pull-based model and adds it to the running batch, i.e.,
whenever the total tokens of the running batch are below the
GPU capacity, a pull signal is issued to retrieve a request from
the global queue. The exact pulled request is determined by
the request group at the head of the virtual queue. Within the
head request group, requests are ordered in an FCFS manner,
therefore the first request to join the head request group
would be the first to be dequeued from the virtual queue
and added to the GPU’s running batch. Note that request
pulling is insufficient to immediately serve a request with
a low SLO value (i.e., stricter SLO) because a pull operation
to the virtual queue can only happen if spare token capacity
exists on the GPU device (i.e., without head-of-line blocking).
Request Eviction (2 in Fig. 7). As request pulling by itself
may not be sufficient to enable the immediate serving of
requests with low SLO values due to head-of-the-line block-
ing, QLM also supports request eviction. Request eviction is
invoked when the RWT estimator detects an SLO violation,
and the global scheduler replaces an existing request group
by placing a request group at the head of the virtual queue.
In request eviction, requests of the head request group are
pulled into the running batch based on available capacity,
and previously running requests are evicted (back) into the
global queue. To prevent re-computation of KV cache of the
lost request upon eviction, we migrate it to CPU memory
instead. However, the GPU-to-CPU memory bandwidth is
typically at least 10× less than the GPU memory bandwidth,
and if the evicted request has a large KV cache, it leads to
significant transfer overhead and consequent performance
degradation. QLM hides this performance degradation using
the asynchronous GPU memory copy available in most GPU
programming libraries.
Load Balancing (3 in Fig. 7). As each LLM serving in-
stance is associated with a separate virtual queue, the global

SoCC ’24, November 20–22,2024, Redmond, WA, USA A. Patke et al.

scheduler’s assignment of request groups to a virtual queue
inherently performs load balancing. Each instance would
only pull from its associated virtual queue, thus ensuring the
distribution of requests across all the serving instances. Note
that QLM does not implement preemptive load balancing,
i.e., once request groups start executing on an LLM serving
instance, they cannot be migrated to another instance.
Model Swapping (4 in Fig. 7). Each LLM serving instance
can servemultiplemodels by switching the underlyingmodel
weights and flushing out the KV cache. QLM assumes a two-
tier hierarchy of memory and disk storage. Therefore, any
model that needs to be served from the LLM model registry
(located in the storage) has to undergo two distinct swaps:
(1) Storage-CPU swapping: The model is first swapped from
the LLM model registry to CPU memory, and (2) CPU-GPU
swapping: The model located in the CPUmemory is swapped
into GPU memory for inferencing. QLM is able to decide the
location (i.e. GPU mem, CPU mem or storage) of each model
by checking the virtual queue order. The model for the head
request of the virtual queue is currently active and should
be placed in the GPU memory. Models present later in the
virtual queue are warm and placed in the CPU memory until
all the CPU memory is exhausted. The remaining models
(cold models) are not swapped out from the LLM model
registry (located in the storage).
LSO Implementation. We implement the abovementioned
LSOs on top of vLLM, a state-of-the-art LLM serving sys-
tem. QLM agents are responsible for triggering each LSO
action. Request pulling and load balancing are implemented
by async pull calls to the virtual queues when there is spare
token capacity on the LLM serving instance. Request evic-
tion and GPU-CPU state swapping require instrumentation
to the vLLM scheduler. In each iteration, the vLLM sched-
uler attempts to generate a new token for all the running
requests and preempts any request that exceeds the total
GPU capacity. At the end of an iteration, QLM agent checks
if either request eviction or state swapping is required and
performs the operation. For both operations, current requests
are removed from the running batch to make space for the
incoming requests at the head of the virtual queue. For re-
quest eviction, the scheduler uses an asynchronous GPU
transfer of the KV cache. Model swapping into the GPU is
implemented by changing the underlying model of the vLLM
instance and flushing out the KV cache.

6 REQUEST WAITING TIME (RWT)
ESTIMATOR

QLM leverages waiting time estimates from the RWT esti-
mator for better utilization and decrease resource costs by
making closer to optimal request queue reordering decisions.
The RWT estimator uses a statistical approach to generate

Table 1: Glossary of symbols used in the RWT estima-
tor.

Symbol Description

𝐶𝑞 Completion time for a request 𝑞
𝑊𝑞 Request waiting time for a request 𝑞
𝑃 Prefill time for a request
𝐷𝑞 Total decode time for a request 𝑞
𝑂𝑞 Number of output tokens for a request 𝑞
Θ Token generation throughput
𝜖 Inefficiency factor due to continuous batching
𝑑 Decode time per output token

estimates of waiting and completion times for requests. To
do so, the estimator first generates an upper bound on re-
quest completion time i.e. the actual request completion time
would be lesser than the estimate. These completion times
are then aggregated to generate completion time of the entire
request group. Overall, the estimator is conservative when
queue size is small (i.e. the estimate is higher than the actual
waiting times) and the accuracy increases with increase in
queue size.

The estimation process is explained in further detail below
with variable definitions listed in Table 1.

As shown in Equation 1, the total request completion time
equals the sum of the waiting time (𝑊𝑞), prefill time (𝑃),
and total decode time across all the output tokens (𝐷𝑞) for a
request 𝑞.

𝐶𝑞 =𝑊𝑞 + 𝑃 + 𝐷𝑞 (1)

Estimating Prefill Time. The prefill time 𝑃 is typically
constant per model type when the input tokens are small
as it is a highly parallel GPU-accelerated operation whose
time increases minimally as the number of input tokens
increases 2. Experiments show that the latency increase from
additional input tokens is 100× less compared to the latency
increase from each additional output token [2]. Therefore,
the major distribution terms that still remain to be estimated
are the waiting time (𝑊𝑞) and decode time (𝐷𝑞).
Estimating Waiting Time.We consider the token gener-
ation throughput (Θ) to be constant throughout the token
generation process due to statistical averaging effects de-
scribed in Appendix A.1. Therefore, the total waiting time
for a single request can be represented by Equation 2 by di-
viding the number of tokens ahead (

∑𝑞−1
𝑖=1 𝑂𝑖) in the queue by

the token generation throughput (Θ) where 𝑖 denotes each
of the 𝑞 − 1 requests in the queue ahead of the request we
model.
2Abnormally long context prompts beyond 10 standard deviations of pro-
duction prompt distribution are not in the scope of QLM and we leave it for
future research work.

Queue Management for SLO-Oriented Large Language Model Serving SoCC ’24, November 20–22,2024, Redmond, WA, USA

𝑊𝑞 =

𝑞−1∑︁
𝑖=1

𝑂𝑖

Θ
(2)

Note that we do not know the number of output tokens
ahead of time (that requires the knowledge of the output
sequence for all requests in the waiting queue), so we model
them as a distribution with the mean 𝜇𝑜 and standard devia-
tion 𝜎𝑜 fitted from the request input-output history dataset
for the request group that the request 𝑞 belongs to. As 𝑞
becomes larger, the Central Limit Theorem (CLT) applies
and the assumption of Normal distribution is accurate for
any underlying request output token distribution. We further
explain this in Appendix A.1.

𝑞−1∑︁
𝑖=1

𝑂𝑖 ∼ 𝑁 ((𝑞 − 1)𝜇𝑜 , (𝑞 − 1)𝜎2
𝑜) (3)

Estimating Decode Time. We compute the total decode
time using Equation 4.

𝐷𝑞 = 𝑂𝑞 × 𝜖 × 𝑑 (4)

As we do not know the exact number of output tokens (𝑂𝑞)
in Equation 4 and the Normal distribution assumption from
CLT does not apply for a single request, we approximate it
using the maximum possible number of output tokens for
the model. As the request queue grows, the waiting time
𝑊𝑞 dominates the completion time 𝐶𝑞 and the error intro-
duced by the above heuristic reduces as shown in Figure 18.
However, for short queues, we maintain the conservative
estimate of decode time as it dominates the completion time.
If GPU memory was not a constraint, the decode steps

would not be interrupted, and the total decode time would
simply be the product of the number of output tokens (𝑂𝑞)
and decode time per output token (𝑑). However, LLM serving
systems cannot ensure this ideal behavior due to continuous
batching. As requests are added continuously to the GPU’s
running batch, some requests inevitably exceed the total
GPU memory capacity limit and have to be temporarily pre-
empted. This leads to inefficiency in the generation process
that we capture with the inefficiency factor 𝜖 , i.e., a constant
multiplied by the decode time per token that captures the
inefficiency associated with the generation process.
Finally, to estimate the completion time of the entire re-

quest group (Equation 5), we need to take the max of all the
completion times of individual requests.

𝐶 = max
𝑞

𝐶𝑞 (5)

Table 2: Glossary of symbols used in the linear pro-
gramming solver.

Symbol Description

𝑔 ∈ G The 𝑔-th virtual queue (VQ) in all virtual queues G
𝑖 ∈ I The 𝑖-th request group (RG) in all request groups I
𝑗 Virtual queue position in [0, 𝐿 − 1] with queue length 𝐿

𝑥𝑔,𝑖, 𝑗 Binary decision variable for assignment of RG 𝑖 to VQ 𝑔

𝑤𝑡𝑔,𝑗 Request group waiting time
𝑚𝑔,𝑗 The model assignment on the 𝑗-th position of VQ 𝑔

𝑡𝑔,𝑗 Binary variable for switching the model to serve on VQ 𝑔

𝑆 Swap time associated with loading a new model into GPU memory
𝑠𝑙𝑜𝑔,𝑗 SLO preservation rate serving the 𝑗-th model on VQ 𝑔

𝑝𝑔,𝑗 Penalty for SLO violation serving the 𝑗-th model on VQ 𝑔

Offline Profiling.There are two independent profiling steps
required for the RWT estimator: (a) Workload Profiling: sam-
ples multiple requests from the workload to generate a dis-
tribution for input and output tokens, and (b) Hardware Pro-
filing: requires running the model with a single batch of
requests on the specific GPU. Fixed variables associated with
the model and hardware setup, such as the prefill time (𝑃),
inefficiency factor (𝜖) and decode time per iteration (𝑑) are
obtained by directly logging these metrics from the LLM serv-
ing instance. In our implementation, we add these logging
metrics directly into vLLM code.

7 GLOBAL SCHEDULER
The global scheduler is invoked by the RWT estimator when
an SLO violation is likely to occur. Upon invocation, the
global scheduler runs a linear programming model to re-
order the virtual queues that decide underlying LSO actions
to maximize SLO attainment. The global scheduler uses a
linear program solver because it: (a) allows handling non-de-
terminism by representing request group completion times
as distributions, and (b) offers a systematic way tomodel vari-
ous constraints associated with SLOs, model swapping times,
and hardware heterogeneity. In this section, we present the
linear programming model with its defined variables listed
in Table 2.
Overall Modeling Approach. The goal of the linear pro-
gramming solver is to find an assignment of request groups
to the virtual queues so that all SLOs are met. To model SLO
attainment, we define a penalty term for each request group,
which is the difference between waiting time and SLO value.
If SLOs are met, all penalty terms would be smaller than
0. Given the SLOs as the inputs to the linear programming
model, we obtain the request group waiting time estimation
from the RWT estimator to estimate the defined penalty
terms. The worst-case waiting time for a request group is
the sum of the waiting time for request groups ahead in the
virtual queue from the same model (from Equation 2), the
completion time for the request group for different models

SoCC ’24, November 20–22,2024, Redmond, WA, USA A. Patke et al.

(from Equation 5), and swap times associated with transfer-
ring model weights into GPU memory 3. Note that effects
associated with hardware and model heterogeneity (such as
token throughput and eviction vs. swap) that impact request
group completion time are captured by the RWT estimator
profiling.
Definitions of Constraints. Now, we describe each of the
constraints in further detail. We assume that each virtual
queue can have a maximum length, and every request group
is assigned to one of the positions in the virtual queue. Equa-
tion 6 models request group assignment to a position in the
virtual queue.∑︁

𝑔

∑︁
𝑗

𝑥𝑔,𝑖, 𝑗 = 1∀𝑖
∑︁
𝑖

𝑥𝑔,𝑖, 𝑗 = 1∀𝑔, 𝑗 (6)

Each request group has a one-to-onemappingwith a position
in a virtual queue. If there are empty positions, we assign
them “empty” request groups to match request groups and
virtual queue capacity.

Each position in the virtual queue would have a corre-
sponding model and SLO based on Equation 6. This assign-
ment is captured with Equation 7 and Equation 8.

𝑚𝑔,𝑗 =
∑︁
𝑖

models𝑖 × 𝑥𝑔,𝑖, 𝑗∀𝑔, 𝑗 (7)

𝑠𝑙𝑜𝑔,𝑗 =
∑︁
𝑖

slos𝑖 × 𝑥𝑔,𝑖, 𝑗∀𝑔, 𝑗 (8)

The transition between two different models is captured in
Equation 9. While inequalities cannot be directly modeled as
constraints, we apply the standard big-M method to reduce
the inequality into linear constraints [7].

𝑡𝑔,𝑗 = (𝑚𝑔,𝑗−1 ≠𝑚𝑔,𝑗)∀𝑔, 𝑗 (9)
The cumulative waiting times of all positions in the vir-

tual queue would be the sum of waiting time, completion
times, and swap times as represented in Equation 10. 𝐶 is
the completion time of a request group from Equation 5.

wt𝑔,𝑗 =
∑︁
𝑖

𝑗−1∑︁
𝑘

𝑊𝑔,𝑖×𝑥𝑔,𝑖,𝑘+
𝑗−1∑︁
𝑘

𝑡𝑔,𝑘×𝑆+
∑︁
𝑖

𝑗−1∑︁
𝑘

𝐶𝑔,𝑖×𝑡𝑔,𝑘×𝑥𝑔,𝑖, 𝑗∀𝑔, 𝑗

(10)
The penalty would simply be the difference between the

waiting time and the SLO value, as shown in Equation 11.
𝑝𝑔,𝑗 = 𝑤𝑡𝑔,𝑗 − 𝑠𝑙𝑜𝑔,𝑗∀𝑔, 𝑗 (11)

The final constraint is that all penalty values should be
less than 0 i.e., all SLOs are satisfied.

𝑝𝑔,𝑗 ≤ 0∀𝑔, 𝑗 (12)
Optimization Goal. The linear programming model aims
to minimize the total penalty for SLO violations.
3We measure swap times from model load time profiling.

min(
∑︁
𝑔

∑︁
𝑗

𝑝𝑔,𝑗) (13)

8 EVALUATION
Our experiments address the following research questions:
(a) QLM performance with respect to SLO attainment and

request throughput in single-model serving (Section
8.1),

(b) QLM performance with respect to SLO attainment and
request throughput in multi-model serving (Section 8.2),

(c) Contribution of each LSO to QLM performance,
(d) Accuracy of the RWT estimator in request waiting time

estimation,
(e) Robustness analysis of QLM to hardware heterogeneity,

token distributions, burstiness, and request group size
regarding LLM-serving performance (Section 8.3), and

(f) Overhead of using QLM with increasing queue sizes.
Experiment Setup. We evaluate QLM on multiple varying-
sized open-source LLMs: Mistral-7B [17], Vicuna-13B [5],
and Llama-70B [47]. We evaluate on a test bed consisting of
GPUs of two types: 30 NVIDIA A10 (24 GB memory) and 50
NVIDIA A100 (80 GB memory). The setup represents both
model and device heterogeneity. To evaluate the benefit of
QLM, we consider the following three baseline mechanisms:
(1) EDF (Earliest Deadline First): Requests are sorted by their
SLO values such that requests with the smallest SLO values
are at the front of the virtual queue, (2) vLLM [20]: Requests
use the default first-come-first-serve (FCFS) scheduler in
vLLM, and (3) SHEPHERD [54]: Requests are served with
dynamic batching and an ILP formulation for ordering and
placement. Note that SHEPHERD cannot be easily extended
to work with continuous batching as the LP formulation
assumes fixed batches with deterministic execution times.

0 500 1000 1500 2000

Tokens

0.00

0.25

0.50

0.75

1.00

C
D

F

Input Tokens

Output Tokens

Figure 8: Distribution of input and output tokens in
the shareGPT dataset.

Workloads. We create our experimental workloads from
the requirements of a production cloud service provider ex-
cept for request arrival rates due to confidentiality reasons.

Queue Management for SLO-Oriented Large Language Model Serving SoCC ’24, November 20–22,2024, Redmond, WA, USA

Llama-70B

Mist
ral-7

B

Vicuna-13B

1

2

R
eq

u
es

t
T

h
ro

u
g

h
p

u
t

(N
or

m
.)

SHEPHERD

vLLM

EDF

QLM

Figure 9: Single model request serv-
ing throughput at 0.5K requests/s
interactive arrival rate. Increased
throughput corresponds to 1.1-2.3×
GPU requirement reduction.

0.5 1.0 2.0 8.0 9.0 10.0

Interactive Request
Arrival Rate (x 1K requests/sec)

0

25

50

75

100

S
L

O
s

M
et

(%
)

EDF

SHEPHERD

vLLM

QLM

QLM (with Scaling)

Figure 10: Single model SLO satisfac-
tion for varying interactive request
arrival rates for Vicuna 13B.

Throughput SLO

0

50

100

R
el

a
ti

ve
P

er
fo

rm
a

n
ce

GPU-CPU Swapping
Pulling-Eviction
Load Balancing

Model Warm Start
QLM

Figure 11: Single model LSO ablation
study at 0.5K requests/s interactive
arrival rate for Vicuna 13B.

Request arrivals are modeled with a Poisson distribution
and queues are created by varying the arrival rates. Each
workload trace uses 3,500 requests from the ShareGPT [46]
dataset with input/output token distribution as shown in Fig-
ure 8. We classify all requests into three categories and define
their SLO values accordingly: (1) Interactive: 20s, (2) Batch-1:
1 min, and (3) Batch-2: 1 hour. Note that these SLOs are de-
fined with respect to the 99th percentile value of the time to
first token (TTFT). We test the experimental workload in the
following three scenarios: [WA] Single-Model Interactive
and Batch Workload which consists of Batch-1, Batch-2,
and Interactive requests for a single model, and no model
swapping is required. [WB] Multi-Model Batch Workload
which consists of Batch-1 and Batch-2 requests. Batch-1 re-
quests use two models: fine-tuned versions of Mistral 7B and
Llama 70B. Batch-2 requests use three models: fine tuned
versions of Vicuna 13B and Llama 70B. [WC] Single-Model
MegaPrompt Workload This request workload consists of
several “mega prompts” in addition to the workload from
𝑊𝐵 . To generate the mega prompt workload, we randomly
select requests with total input and output tokens in the 3K –
4K range. These mega prompts have a large number of input
and output tokens that occupy a large percentage of GPU
memory and cause further HOL blocking.

We do not present results for the multi-model interactive
workload because QLM assigns a separate GPU for each
model, effectively reducing the workload to a single model
workload (𝑊𝐴). QLM’ global scheduler decides not to swap
the models as the model swapping time exceeds the interac-
tive request SLO (20s).

8.1 Single-Model Evaluation
We run workload 𝑊𝐴 on 50 A100 GPUs to evaluate the
single-model LLM serving performance regarding the request
throughput, SLO attainment, and LSO contribution ablation
study (similar to the multi-model evaluation in Section 8.2).
Request Throughput and SLO Attainment. Figure 10
shows the percentage of SLOs that are satisfied by QLM
and the baseline systems. We find that when the request
arrival rate significantly exceeds the serving capacity, none
of the systems can satisfy the SLOs. This is because the
minimum serving time is much longer than the specified
SLO. As the arrival rate of interactive requests decreases,
QLM performs the best in satisfying the maximum number
of SLOs. Specifically, it performs better than the baseline
mechanisms because: (a) Compared to vLLM, QLM is able
to move interactive service requests ahead in the queue,
(b) Compared to EDF, QLM enables appropriate eviction of
batch requests from the running queue, and (c) Compared to
SHEPHERD, QLM uses continuous batching as opposed to
static batch size and models the auto-regressive LLM nature
with the RWT estimator to increase request throughput.

We find that the advantages of QLM with respect to smart
selection among various LSOs, continuous batching, and ap-
propriate request prioritization help with improving request
throughput. Figure 9 shows the request throughput for QLM
and the individual baseline mechanisms at arrival rate of
0.5K requests/s where QLM is able to achieve the maximum
SLO satisfaction. QLM achieves higher throughput, i.e., 20%
higher compared to vLLM and EDF, and 50% higher than
SHEPHERD.
Contribution of Each LSO. Figure 11 shows the impact of
removing each LSO considered by the backend LLM serving

SoCC ’24, November 20–22,2024, Redmond, WA, USA A. Patke et al.

0.2 0.5 1

Batch-1 Request
Arrival Rate (x 1K requests/s)

1

2

3

4

5

R
eq

u
es

t
T

h
ro

u
g

h
p

u
t

(N
or

m
.)

SHEPHERD
vLLM

EDF
QLM

Figure 12: Multi-model request serv-
ing throughput for varying Batch-
1 request arrival rates. Increased
throughput corresponds to 2-5×GPU
requirement reduction.

0.25 0.5 1.0 4.0 4.5 5.0

Batch-1 Request
Arrival Rate (x 1K request/s)

0

25

50

75

100

S
L

O
s

M
et

(%
)

EDF

SHEPHERD

vLLM

QLM

QLM (with Scaling)

Figure 13: Multi-model SLO satisfac-
tion for varying Batch-1 request ar-
rival rates.

Throughput SLO

0

50

100

R
el

a
ti

ve
P

er
fo

rm
a

n
ce

GPU-CPU Swapping
Pulling-Eviction
Load Balancing

Model Warm Start
QLM

Figure 14: Multi-model LSO ablation
study for 0.25K requests/sec Batch-1
arrival rate.

instance in QLM. Request pulling contribute significantly to
latency reduction for interactive services and consequently
increase the number of SLOs met. Request eviction increases
request throughput by swapping the KV cache into CPU
memory. Finally, model swapping has no impact on this
workload as a single model is being served.

8.2 Multi-Model Evaluation
We run workload𝑊𝐵 to evaluate the multi-model perfor-
mance on 50 A100 GPUs with respect to request throughput
and SLO satisfaction. Additionally, we also provide an abla-
tion study to understand the contribution of each LSO to the
overall QLM performance.
Request Throughput and SLO Attainment. Figure 12
shows the request throughput (i.e., requests served per sec-
ond) for𝑊𝐵 comparing QLM with the baseline mechanisms
for varying Batch-1 arrival rates. QLM provides up to 3–4×
higher throughput due to the following factors: (1) The use of
request groups minimizes repeated swapping required as the
model would only be swapped in once per request group in-
stead of per individual request, and (2) The global scheduler
couples every Batch-1 model with another Batch-2 model to
minimize swaps while maintaining an equal distribution of
queue sizes.
The improvement in request throughput directly maxi-

mizes the percentage of SLO satisfied for all requests. Fig-
ure 13 shows the percentage of SLO satisfied for the inter-
active services against against their arrival rate. When the
Batch-1 requests arrive at less than 0.5K requests/s, QLM
satisfies more than 90% of all SLO values. As the arrival
rate of Batch-1 service requests increases, no combination
of requests would be able to meet all SLOs, and the global

scheduler would fail to return a solution. In such a scenario,
a scale-up action is required to add more GPU devices. We
perform this scale-up action to enable 100% SLO attainment
if the current GPU capacity is insufficient. The baselines
perform worse compared to QLM because none of them con-
sider the impact of model swapping. Other limitations of the
baselines are discussed in Section 8.1.
Contribution of Each LSO. Each of the four LSOs used
by QLM, including request pulling, request eviction, model
swapping, and load balancing, contributes to either the la-
tency and/or the throughput of the serving system. Figure 14
shows the impact of removing each LSO on QLM perfor-
mance for𝑊𝐵 . The model warm start LSO contributes the
most to QLM performance for both SLOs and throughput,
as multiple models need to be multiplexed on the same LLM
serving instance. Additionally, the other LSOs contribute
primarily to the latency SLO attainment.

8.3 QLM Robustness Analysis
Hardware Heterogeneity.We run𝑊𝐴 on a mix of A10 and
A100 GPUs to evaluate the robustness of QLM performance
in heterogeneous hardware setup. Figure 15 shows request
throughput when the cluster has varying ratios of A10 to
A100 GPUs. The A10 is a lower-end GPU with ∼3× lower
GPU memory and thus is only capable of serving a much
lower request throughput compared to the A100 GPU. QLM
takes into account this difference between request through-
put across GPUs via the RWT estimator with offline profiling,
and the global scheduler proportionally assigns a lower num-
ber of requests to the A10 GPU compared to the A100. On
the other hand, if we use a round-robin policy for request

Queue Management for SLO-Oriented Large Language Model Serving SoCC ’24, November 20–22,2024, Redmond, WA, USA

0 20 50 80 100

A10 GPU (%)

50

100

S
L

O
M

et
(%

)

Round Robin QLM

Figure 15: Impact of hardware het-
erogeneity.

2 4

Mega Prompt
Arrival Rate (requests/s)

50

75

100

S
L

O
M

et
(%

)

Round Robin QLM

Figure 16: Impact of mega prompt
arrivals.

0 4 8 12

Queue Size (k)

0

25

50

75

100

S
L

O
s

M
et

(%
)

SHEPHERD vLLM EDF QLM

Figure 17: Impact of increasing
queue size on SLO satisfaction.

assignment to the LLM serving instances (while using de-
fault QLM policy per instance), the load would be distributed
equally, leading to higher queue drain times for the A10 GPU.
Additionally, we also observe that the benefit of QLM is more
compared to a random policy when the heterogeneity of the
cluster is higher. When the A10 GPUs constitute 20–50% of
the cluster (more heterogeneous), the improvement of QLM
over random policy is 2–5× higher compared to a 100% A10
or 100% A100 composition (more homogeneous). Note that
for experimental purposes, we increase the total number of
A100s proportionately to demonstrate the impact of GPU
imbalance.
Mega PromptWorkload. The RWT estimator of QLM takes
into account input and output token distribution when esti-
mating the request waiting time. Consequently, when there
are distinct token distributions, such as in workload setup
𝑊𝐶 , QLM is able to load balance them intelligently across
LLM serving instances to minimize the queue drain time.
For example, in workload𝑊𝐶 , the “mega prompts” use a
large number of tokens, and their KV cache occupies the
entire GPU memory, causing head-of-the-line blocking for
the regular requests in the queue. The optimal policy, as
identified by QLM, in such a scenario would be to allocate all
the regular requests to another LLM serving instance. Note
that request eviction is not an option if all SLOs are tight.
Figure 16 shows the benefit of QLM for workload𝑊𝐶 . The
relative benefit of QLM is highest for a few mega prompts
because the regular requests can be moved to another GPU.
As the percentage of mega prompts increases, there is no
option but to assign them to different LLM serving instances,
causing inevitable HOL blocking, and the benefit of QLM
reduces. In such a case, we would need to perform a scale-up
action and add more GPU devices to the cluster to continue
maintaining SLOs.
Varying Queue Size and Burstiness. The benefit of QLM is
largely present when the queue size is large, and intelligent
decision-making is required for setting LSO actions. Thus, to

show the benefit of QLM under varying queue sizes, we vary
the arrival rates of requests in𝑊𝐵 to create a large queue
and compare it against the baseline systems as shown in
Figure 17. When the queue size is 0, QLM offers no benefit in
maintaining SLOs as compared to the baseline approaches
because the system is underutilized and does not require any
smart decision-making. However, as the queue size increases,
the percentage of SLOs met by the baseline systems keeps
dropping due to reasons described in Section 8.1, while QLM
is able to maintain a high SLO satisfaction percentage.
RWT Estimator Accuracy. The RWT estimator calculates
the request waiting time based on initial profiling of the
model and hardware setup. This initial profiling time is neg-
ligible as only a single batch of requests needs to be run on
the GPU.
Figure 18 shows the coefficient of determination (𝑅2 val-

ues) when estimating waiting times for increasing queue
sizes across the different models. Overall, we confirm our
observation that as the number of request groups in the
queue increase the waiting time estimation becomes more
accurate. Specifically, we find with four request groups the
RWT estimator reaches an accuracy of 0.99.
While the RWT estimator is highly accurate in estimat-

ing request waiting time for longer request queues, it is not
perfect. When request queues are small, statistical averaging
effects of continuous batching do not hold and the wait-
ing time estimation tends calculates more conservative (i.e.
higher) estimates leading to lower estimation accuracy.
Impact of Request Group Size.QLM sets the request group
size as a multiple (𝛿) of the average batch size. The exact 𝛿
value depends on the acceptable trade-off between the over-
head of running the global scheduler and the granularity of
decision-making. As 𝛿 becomes smaller, QLM achieves a finer
granularity of decision-making, leading to improved perfor-
mance. However, the overhead leads to delayed decision-
making. Figure 19 demonstrates this tradeoff between per-
formance degradation (caused by changing granularity in

SoCC ’24, November 20–22,2024, Redmond, WA, USA A. Patke et al.

0 2 4 6 8

#Request Groups

0.0

0.5

1.0

R
²

V
a

lu
e

Mistral 7B
Vicuna 13B

Llama 70B

Figure 18: Accuracy of RWT estima-
tor.

1 2 4 8 16

δ : Request Group Size/Batch Size

1.0

1.5

P
er

fo
rm

a
n

ce
D

eg
ra

d
a

ti
o

n
(N

or
m

.)

Performance Degradation Overhead

5

10

15

O
ve

rh
ea

d
(N

or
m

.)

Figure 19: Impact of request group size
on QLM performance.

104 106

Queue Size (Requests)

10−2

10−1

100

101

O
ve

rh
ea

d
(s

)

A10,7B

A100,7B

A100,13B

4xA100,70B

Figure 20: QLM Overhead.

decision making) and overhead of the global scheduler when
varying 𝛿 . At 𝛿 = 16, the overhead is smallest, but decision-
making granularity is coarse, leading to sub-optimal deci-
sions (such as imbalance between virtual queue sizes of LLM
serving instances). In contrast, at 𝛿 = 1, the performance
degradation is minimal, but overhead is much higher. We
choose 𝛿 = 4, as it results in nearly zero performance degra-
dation, compared to 𝛿 = 1, while maintaining a low overhead.
Scalability and Overhead. The global scheduler is invoked
only when QLM detects an SLO violation using the RWT es-
timator. While the global scheduler is performing the virtual
queue reordering, QLM continues serving and requests with
tight SLOs (low latency requirements) placed at the front
of the virtual queues are not interrupted. This ensures the
global scheduler is off the critical serving path (i.e. the over-
heads can be hidden) and ensures SLO compliance. While
the global scheduler is the primary overhead, other system
overheads include the CPU memory required for the request
eviction and model swapping LSOs. Specifically, we require
an additional 80 GB CPUmemory for Vicuna 13B andMistral
7B, and 320 GB CPU memory for Llama 70B.

In Figure 20, we show the time required to solve for the
linear program in the global scheduler with varying queue
sizes in terms of the number of requests. As the basic unit
of the solver is a single request group, the model and GPU
configurations with a larger request group size would be able
to handle a much larger queue size for the same overhead.
Consequently, configurations with a large request group size,
such as an A100 with a 7B model, can handle a maximum
queue size of 400K requests at a 5s overhead per request
group (i.e., 5 ms per request, a production requirement).

9 DISCUSSION AND FUTUREWORK
What are the failure scenarios for the RWT Estima-
tor? The RWT Estimator has the following drawbacks: (a) If
the number of request groups in the queue are small, QLM

overestimates the request waiting time. Such a conservative
estimate is important as it would still lead to SLO preser-
vation by the global scheduler, albeit the system could be
underutilized compared to optimal. (b) When the number of
output tokens is out-of-distribution (for example, more than
5-10 standard deviations above mean), the estimator would
underestimate the request group completion time leading to
potential SLO violations. However, in our experience with
shareGPT and production traces such scenarios are rare.
What happens if QLM is unable to meet SLOs? QLM’s
global scheduler may not be able to find an optimal virtual
queue ordering if the request demand is high and the number
of LLM serving instances (i.e., underlying compute resources)
is insufficient. In such cases, we have three choices: (a) scale
up the number of LLM serving instances by adding GPU
devices, as we demonstrate in Figure 13 and Figure 10, (b) fall
back to a heuristic such as Earliest Deadline First (EDF) and
continue serving requests, and (c) performance admission
control or rate limiting by dropping incoming requests to
limit queue size. Option (a) can only be used when there are
available resources, whereas Option (b) and Option (c) would
lead to SLO violations.
Can new LSOs be added to QLM? QLM can be extended
to support other LSOs that depend on the queue size and
request ordering. For example, GPU partitioning techniques
(such as NVIDIA MIG [30]) can be added as an LSO with
additional constraints on memory in the linear programming
solver described in Section 7. We leave the addition of extra
LSOs to our future work.
How can QLM handle request priorities? QLM can also
be used when strict priorities are assigned to requests in-
stead of SLO values. In the strict priority model, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡1
would execute before 𝑟𝑒𝑞𝑢𝑒𝑠𝑡2, if 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 (𝑟𝑒𝑞𝑢𝑒𝑠𝑡1) is less
than 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 (𝑟𝑒𝑞𝑢𝑒𝑠𝑡2). With strict priority, the relative or-
dering of requests across priorities is pre-decided, however

Queue Management for SLO-Oriented Large Language Model Serving SoCC ’24, November 20–22,2024, Redmond, WA, USA

Category Multi Instance SLO-aware Autoregressive
Optimizations

Hardware
Heterogeneity

LLM Scheduling Optimizations [16, 20,
51] ✗ ✗ ✓ ✓

LLM Serving Backend Optimizations
[1, 10, 11, 22, 24, 26–28, 34, 42, 43, 55–
57]

✗ ✗ ✓ ✓

General ML Model-Serving Systems
[8, 9, 13, 53, 54] ✓ ✓ ✗ ✓

LLM Orchestration Systems [45] ✓ ✗ ✓ ✗

QLM ✓ ✓ ✓ ✓

✓: Supported, ✗: Not Supported
Table 3: Comparison of QLM with Related Work

per-priority assignment still needs to be optimized to maxi-
mize SLO satisfaction. Consequently, the concepts of virtual
queues, request groups, and the RWT estimator continue to
remain useful.
Can SLOs be defined on end-to-end latency? QLM ad-
dresses the problem of optimizing time to first token (TTFT)
SLO attainment. However, it can also be made to work with
the modified objective of end to end request completion time
SLOs (i.e. including decoding iterations). In this case, the
RWT estimator and global scheduler need to be modified
to consider a distribution of number of output tokens per
request (as the exact number are unknown aprioiri).
Can SLOs be defined on inter-token latency? QLM pri-
marily addresses the problem of TTFT and does not guaran-
tee the inter-token latency (ITL). However, related work such
as Andes [25] attempts to guarantee token generation speed
(that can be converted into inter-token latency) by modifying
the local vLLM scheduler. QLM can work together with such
systems to ensure ITL SLOs along with TTFT SLOs.

10 RELATEDWORK
LLM Scheduling and Orchestration. Existing state-of-
the-art LLM serving systems [16, 20, 51] adopts continuous
batching and a first-come-first-serve (FCFS) scheduling pol-
icy that suffers from head-of-line (HOL) blocking, which
we address in QLM. FastServe [49] proposes preemptive
scheduling with a Multi-Level Feedback Queue. Andes [25]
defines Quality-of-Experience (QoE) for LLM serving as to-
ken delivery speed, and proposes a preemptive scheduler
that maximizes QoE. Llumnix [45] is an orchestration sys-
tem across multiple LLM serving instances. QLM is the first

queue management framework that optimizes SLO attain-
ment while improving LLM-serving throughput and device
utilization by systematically orchestrating backend LSOs.
LLM Serving Backend Optimization. Various LLM serv-
ing backend optimization techniques have been proposed
to improve token generation throughput and memory cost
while adapting to fine-tuning paradigms such StreamingLLM,
Speculative Decoding, ChunkedAttention, FlashAttention
and more [1, 10, 11, 22, 24, 26–28, 34, 42, 43, 55–57]. These
backend LLM-serving optimizations are complementary to
QLM as the LLM serving instance (see Def. 2.3), and their
impact on token generation throughput can be captured with
profiling for the RCT Estimator (see Section 6).
General ML Model-Serving Systems. Traditional model-
serving systems provide functionalities such as scheduling,
placement, batching, and autoscaling. Clipper [9], TensorFlow-
Serving [32], MArk [53], InferLine [8], SHEPHERD [54], and
Clockwork [13] are some earlier work on serving traditional
ML models like ResNet that are relatively small. INFaaS [39]
and Cocktail [14] propose a model-less serving framework to
automate the model selection and autoscaling to meet SLOs.
However, they fail to consider the autoregressive property of
LLMs. On the other hand, advanced autoscaling techniques
are complementary to QLM.

11 CONCLUSION
We presented QLM, a novel queue management framework
that orchestrates backend LSOs for SLO-oriented LLM serv-
ing. Evaluation using real-world LLM serving datasets on
heterogeneous model types and GPU devices demonstrate
that QLM improves end-to-end latency SLO attainment by
40–90% while improving serving throughput and device uti-
lization by 20-400%.

SoCC ’24, November 20–22,2024, Redmond, WA, USA A. Patke et al.

12 ACKNOWLEDGEMENTS
We thank the anonymous reviewers for providing their valu-
able feedback. We also thank Nick Hill, Lionel Villard, and
Mudhakar Srivatsa for providing us with production require-
ments and insight, and Rohan Arora for infrastructure sup-
port. This work is supported by the National Science Foun-
dation (NSF) under grant No. CCF 20-29049 and by the IBM-
ILLINOIS Discovery Accelerator Institute (IIDAI). Any opin-
ions, findings, conclusions, or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the NSF or IBM.

REFERENCES
[1] Reyna Abhyankar, Zijian He, Vikranth Srivatsa, Hao Zhang, and Yiying

Zhang. 2024. APIServe: Efficient API Support for Large-Language
Model Inferencing. arXiv:arXiv preprint arXiv:2402.01869

[2] Anyscale. 2024. Reproducible Performance Metrics for LLM in-
ference. https://www.anyscale.com/blog/reproducible-performance-
metrics-for-llm-inference. Accessed: 2024/04/10.

[3] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran
Arora, Sydney von Arx, Michael S Bernstein, Jeannette Bohg, Antoine
Bosselut, Emma Brunskill, et al. 2021. On the Opportunities and Risks
of Foundation Models. arXiv:arXiv preprint arXiv:2108.07258

[4] Shuang Chen, Christina Delimitrou, and José F Martínez. 2019. Parties:
QoS-aware resource partitioning for multiple interactive services. In
Proceedings of the 24th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS 2019).
ACM, Providence, RI, 107–120.

[5] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao
Zhang, Lianmin Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E.
Gonzalez, Ion Stoica, and Eric P. Xing. 2023. Vicuna: An Open-Source
Chatbot Impressing GPT-4 with 90% ChatGPT Quality. https://lmsys.
org/blog/2023-03-30-vicuna/

[6] Seungbeom Choi, Sunho Lee, Yeonjae Kim, Jongse Park, Youngjin
Kwon, and Jaehyuk Huh. 2022. Serving heterogeneous machine learn-
ing models on multi-GPU servers with Spatio-Temporal sharing. In
2022 USENIX Annual Technical Conference (USENIX ATC 2022). USENIX,
Carlsbad, CA, 199–216.

[7] Marco Cococcioni and Lorenzo Fiaschi. 2021. The Big-M method with
the numerical infinite M. Optimization Letters 15, 7 (2021), 2455–2468.

[8] Daniel Crankshaw, Gur-Eyal Sela, Xiangxi Mo, Corey Zumar, Ion Sto-
ica, Joseph Gonzalez, and Alexey Tumanov. 2020. InferLine: Latency-
Aware Provisioning and Scaling for Prediction Serving Pipelines. In
Proceedings of the 11th ACM Symposium on Cloud Computing. As-
sociation for Computing Machinery, New York, NY, USA, 477–491.
https://doi.org/10.1145/3419111.3421285

[9] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J Franklin,
Joseph E Gonzalez, and Ion Stoica. 2017. Clipper: A Low-Latency
Online Prediction Serving System. In Proceedings of the 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
2017). USENIX, Boston,MA, 613–627.

[10] Jiarui Fang, Yang Yu, Chengduo Zhao, and Jie Zhou. 2021. TurboTrans-
formers: An Efficient GPU Serving System for Transformer Models.
In Proceedings of the 26th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP 2021). ACM, Austin, TX,
389–402.

[11] Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and
Jianfeng Gao. 2024. Model Tells You What to Discard: Adaptive KV

Cache Compression for LLMs. arXiv:2310.01801 [cs.CL]
[12] Ulrich Gnewuch, Stefan Morana, Marc TP Adam, and Alexander Maed-

che. 2022. Opposing Effects of Response Time in Human–Chatbot
Interaction: the moderating role of prior experience. Business & Infor-
mation Systems Engineering 64, 6 (2022), 773–791.

[13] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kauf-
mann, Ymir Vigfusson, and Jonathan Mace. 2020. Serving DNNs like
clockwork: Performance predictability from the bottom up. In Proceed-
ings of the 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 2020). USENIX, Berkeley, CA, 443–462.

[14] Jashwant Raj Gunasekaran, Cyan Subhra Mishra, Prashanth Thi-
nakaran, Bikash Sharma, Mahmut Taylan Kandemir, and Chita R Das.
2022. Cocktail: A Multidimensional Optimization for Model Serving
in Cloud. In Proceedings of the 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 2022). USENIX, Renton, WA,
1041–1057.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep
Residual Learning for Image Recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR 2016).
IEEE, Las Vegas, NV, 770–778.

[16] HuggingFace. 2024. Text Generation Inference. HuggingFace. Retrieved
July 1, 2024 from https://github.com/huggingface/text-generation-
inference

[17] Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford,
Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna
Lengyel, Guillaume Lample, Lucile Saulnier, et al. 2023. Mistral 7B.

[18] Hanlei Jin, Yang Zhang, Dan Meng, Jun Wang, and Jinghua Tan. 2024.
A comprehensive survey on process-oriented automatic text summa-
rization with exploration of llm-based methods.

[19] Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache, ShravanMatthur
Narayanamurthy, Alexey Tumanov, Jonathan Yaniv, RuslanMavlyutov,
Inigo Goiri, Subru Krishnan, Janardhan Kulkarni, et al. 2016. Mor-
pheus: Towards automated SLO for enterprise clusters. In Proceedings
of the 12th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 2016). USENIX, Savannah, GA, 117–134.

[20] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin
Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica.
2023. Efficient Memory Management for Large Language Model Serv-
ing with PagedAttention. In Proceedings of the 29th Symposium on
Operating Systems Principles (SOSP 2023). ACM, Koblenz, Germany,
611–626.

[21] Matthew LeMay, Shijian Li, and Tian Guo. 2020. Perseus: Characteriz-
ing performance and cost of multi-tenant serving for CNN models. In
2020 IEEE International Conference on Cloud Engineering (IC2E 2020).
IEEE, IEEE, Boston, MA, 66–72.

[22] Yaniv Leviathan, Matan Kalman, and Yossi Matias. 2023. Fast Inference
from Transformers via Speculative Decoding. In Proceedings of the
40th International Conference on Machine Learning (ICML 2023). PMLR,
PMLR, Honolulu, HI, 19274–19286.

[23] Zhuohan Li, Lianmin Zheng, Yinmin Zhong, Vincent Liu, Ying Sheng,
Xin Jin, Yanping Huang, Zhifeng Chen, Hao Zhang, Joseph E Gonzalez,
et al. 2023. AlpaServe: Statistical Multiplexing with Model Parallelism
for Deep Learning Serving. In Proceedings of the 17th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 2023).
USENIX, Boston, MA, 663–679.

[24] Pierre Lienhart. 2024. LLM Inference Series: 4. KV caching, a deeper
look. https://medium.com/@plienhar/llm-inference-series-4-kv-
caching-a-deeper-look-4ba9a77746c8 (Accessed on 04/10/2024).

[25] Jiachen Liu, Zhiyu Wu, Jae-Won Chung, Fan Lai, Myungjin Lee, and
Mosharaf Chowdhury. 2024. Andes: Defining and Enhancing Quality-
of-Experience in LLM-Based Text Streaming Services.

https://arxiv.org/abs/arXiv preprint arXiv:2402.01869
https://www.anyscale.com/blog/reproducible-performance-metrics-for-llm-inference
https://www.anyscale.com/blog/reproducible-performance-metrics-for-llm-inference
https://arxiv.org/abs/arXiv preprint arXiv:2108.07258
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://doi.org/10.1145/3419111.3421285
https://arxiv.org/abs/2310.01801
https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/text-generation-inference
https://medium.com/@plienhar/llm-inference-series-4-kv-caching-a-deeper-look-4ba9a77746c8
https://medium.com/@plienhar/llm-inference-series-4-kv-caching-a-deeper-look-4ba9a77746c8

Queue Management for SLO-Oriented Large Language Model Serving SoCC ’24, November 20–22,2024, Redmond, WA, USA

[26] Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie,
Zhaozhuo Xu, Anastasios Kyrillidis, and Anshumali Shrivastava. 2023.
Scissorhands: Exploiting the Persistence of Importance Hypothesis for
LLM KV Cache Compression at Test Time. arXiv:2305.17118 [cs.LG]

[27] Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao
Song, Anshumali Shrivastava, Ce Zhang, Yuandong Tian, Christopher
Re, et al. 2023. DejaVu: Contextual Sparsity for Efficient LLMs at
Inference Time. In Proceedings of the 40th International Conference on
Machine Learning (ICML 2023). PMLR, PMLR, Honolulu, HI, 22137–
22176.

[28] Xupeng Miao, Chunan Shi, Jiangfei Duan, Xiaoli Xi, Dahua Lin, Bin
Cui, and Zhihao Jia. 2023. SpotServe: Serving generative large language
models on preemptible instances.

[29] Avanika Narayan, Ines Chami, Laurel Orr, Simran Arora, and Christo-
pher Ré. 2022. Can foundation models wrangle your data?

[30] NVIDIA. 2024. Nvidia Multi-instance GPU. https://www.nvidia.com/
en-us/technologies/multi-instance-gpu/. Accessed: 2024/04/10.

[31] NVIDIA. 2024. TensorRT-LLM. NVIDIA. Retrieved July 1, 2024 from
https://github.com/NVIDIA/TensorRT-LLM

[32] Christopher Olston, Fangwei Li, Jeremiah Harmsen, Jordan Soyke, Kiril
Gorovoy, Li Lao, Noah Fiedel, Sukriti Ramesh, and Vinu Rajashekhar.
2017. TensorFlow-Serving: Flexible, High-Performance ML Serving.

[33] OpenAI. 2024. OpenAI - Finetuning. OpenAI. Retrieved July 1, 2024
from https://platform.openai.com/docs/guides/fine-tuning

[34] Pratyush Patel, Esha Choukse, Chaojie Zhang, Íñigo Goiri,
Aashaka Shah, Saeed Maleki, and Ricardo Bianchini. 2023. Split-
wise: Efficient generative LLM inference using phase splitting.
arXiv:2311.18677 [cs.AR]

[35] Haoran Qiu, Subho S Banerjee, Saurabh Jha, Zbigniew T Kalbarczyk,
and Ravishankar K Iyer. 2020. FIRM: An intelligent fine-grained re-
source management framework for SLO-oriented microservices. In
Proceedings of The 14th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 2020). USENIX, Virtual, 805–825.

[36] Haoran Qiu, Weichao Mao, Archit Patke, Shengkun Cui, Saurabh Jha,
Chen Wang, Hubertus Franke, Zbigniew T. Kalbarczyk, Tamer Başar,
and Ravishankar K. Iyer. 2024. Efficient Interactive LLM Serving with
Proxy Model-based Sequence Length Prediction. In The 5th Interna-
tional Workshop on Cloud Intelligence / AIOps at ASPLOS 2024, Vol. 5.
Association for Computing Machinery, San Diego, CA, USA, 1–7.

[37] Haoran Qiu, Weichao Mao, Archit Patke, Shengkun Cui, Saurabh Jha,
Chen Wang, Hubertus Franke, Zbigniew T Kalbarczyk, Tamer Başar,
and Ravishankar K Iyer. 2024. Power-aware Deep LearningModel Serv-
ing with 𝜇-Serve. In Proceedings of the 2024 USENIX Annual Technical
Conference (USENIX ATC 2024). USENIX, Santa Clara, CA, 75–93.

[38] RabbitMQ. 2024. RabbitMQ. https://www.rabbitmq.com/.
[39] Francisco Romero, Qian Li, Neeraja J Yadwadkar, and Christos

Kozyrakis. 2021. INFaaS: Automated Model-less Inference Serving. In
Proceedings of 2021 USENIX Annual Technical Conference (ATC 2021).
USENIX, Virtual, 397–411.

[40] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat,
Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin,
et al. 2023. Code llama: Open foundation models for code.

[41] Hojjat Salehinejad, Sharan Sankar, Joseph Barfett, Errol Colak, and
Shahrokh Valaee. 2017. Recent advances in recurrent neural networks.

[42] Ying Sheng, Shiyi Cao, Dacheng Li, Coleman Hooper, Nicholas Lee,
Shuo Yang, Christopher Chou, Banghua Zhu, Lianmin Zheng, Kurt
Keutzer, Joseph E. Gonzalez, and Ion Stoica. 2023. S-LoRA: Serving
Thousands of Concurrent LoRA Adapters. arXiv:2311.03285 [cs.LG]

[43] Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin,
Beidi Chen, Percy Liang, Christopher Ré, Ion Stoica, and Ce Zhang.
2023. FlexGen: High-Throughput Generative Inference of Large Lan-
guage Models with a Single GPU. In Proceedings of the 40th Interna-
tional Conference on Machine Learning (ICML 2023). PMLR, PMLR,
Honolulu, HI, 31094–31116.

[44] Shivchander Sudalairaj, Abhishek Bhandwaldar, Aldo Pareja, Kai Xu,
David D Cox, and Akash Srivastava. 2024. Lab: Large-scale alignment
for chatbots.

[45] Biao Sun, Ziming Huang, Hanyu Zhao, Wencong Xiao, Xinyi Zhang,
Yong Li, and Wei Lin. 2024. Llumnix: Dynamic Scheduling for Large
Language Model Serving.

[46] Vicuna team. 2024. ShareGPT Dataset. Vicuna team. Retrieved
July 1, 2024 from https://huggingface.co/datasets/anon8231489123/
ShareGPT_Vicuna_unfiltered

[47] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-
Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric
Hambro, Faisal Azhar, et al. 2023. Llama: Open and efficient foundation
language models.

[48] Yuxin Wang, Yuhan Chen, Zeyu Li, Zhenheng Tang, Rui Guo, Xin
Wang, Qiang Wang, Amelie Chi Zhou, and Xiaowen Chu. 2024. To-
wards Efficient and Reliable LLM Serving: A Real-World Workload
Study. arXiv:2401.17644 [cs.DC]

[49] Bingyang Wu, Yinmin Zhong, Zili Zhang, Gang Huang, Xuanzhe
Liu, and Xin Jin. 2023. Fast Distributed Inference Serving for Large
Language Models.

[50] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang,
Erkang Zhu, Beibin Li, Li Jiang, Xiaoyun Zhang, and Chi Wang. 2023.
AutoGen: Enabling next-gen LLM applications via multi-agent con-
versation framework.

[51] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and
Byung-Gon Chun. 2022. Orca: A Distributed Serving System for
Transformer-Based Generative Models. In Proceedings of the 16th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 2022). USENIX, Carlsbad, CA, 521–538.

[52] Matei Zaharia, Omar Khattab, Lingjiao Chen, Jared Quincy Davis,
Heather Miller, Chris Potts, James Zou, Michael Carbin, Jonathan
Frankle, Naveen Rao, and Ali Ghodsi. 2024. The Shift from Models
to Compound AI Systems. https://bair.berkeley.edu/blog/2024/02/18/
compound-ai-systems/.

[53] Chengliang Zhang, Minchen Yu, WeiWang, and Feng Yan. 2019. MArk:
Exploiting Cloud Services for Cost-Effective, SLO-Aware Machine
Learning Inference Serving. In Proceedings of 2019 USENIX Annual
Technical Conference (ATC 2019). USENIX, Renton, WA, 1049–1062.

[54] Hong Zhang, Yupeng Tang, Anurag Khandelwal, and Ion Stoica. 2023.
Shepherd: Serving DNNs in theWild. In Proceedings of the 20th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
2023). USENIX, Boston, MA, 787–808.

[55] Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin
Zheng, Ruisi Cai, Zhao Song, Yuandong Tian, Christopher Ré, Clark
Barrett, Zhangyang Wang, and Beidi Chen. 2023. H2O: Heavy-Hitter
Oracle for Efficient Generative Inference of Large Language Models.
arXiv:2306.14048 [cs.LG]

[56] Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xu-
anzhe Liu, Xin Jin, and Hao Zhang. 2024. DistServe: Disaggregating
Prefill and Decoding for Goodput-optimized Large Language Model
Serving. arXiv:2401.09670 [cs.DC]

[57] Lei Zhu, Xinjiang Wang, Wayne Zhang, and Rynson W. H. Lau. 2024.
RelayAttention for Efficient Large Language Model Serving with Long
System Prompts. arXiv:2402.14808 [cs.CL]

https://arxiv.org/abs/2305.17118
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://github.com/NVIDIA/TensorRT-LLM
https://platform.openai.com/docs/guides/fine-tuning
https://arxiv.org/abs/2311.18677
https://www.rabbitmq.com/
https://arxiv.org/abs/2311.03285
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://arxiv.org/abs/2401.17644
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/
https://arxiv.org/abs/2306.14048
https://arxiv.org/abs/2401.09670
https://arxiv.org/abs/2402.14808

SoCC ’24, November 20–22,2024, Redmond, WA, USA A. Patke et al.

Symbol Description
𝑊 Total waiting time for a request in the queue
𝑂 Total number of output tokens in the queue
Θ Output token generation throughput (tokens/s)
𝐵 Batch size
𝛿 Decoding time per token
𝜖 Preemption factor

GPU Total token memory capacity in GPU
𝐼𝑖 Number of input tokens for the 𝑖-th request
𝑂𝑖 Number of output tokens for the 𝑖-th request
𝜇𝑂 Mean number of output tokens per request
𝜎2
𝑂

Variance of output tokens per request
𝜇𝐼 Mean number of input tokens per request
𝜎2
𝐼

Variance of input tokens per request
n Size of the waiting queue

Table 4: Glossary of Symbols Used in the Statistical
Derivation

A APPENDIX
A.1 Waiting Time Predictability
Below, we present a statistical derivation for the underlying
assumptions from the RWT estimator from Section 6.

The total number of output tokens in the queue would be
the sum of output tokens of individual requests. The total
waiting time for a request joining such a queue would be
the time to process output tokens for requests ahead in the
queue, which would be the number of output tokens divided
by the token generation throughput.

𝑊 =
𝑂

Θ
(14)

The average token generation throughput (i.e. the number
of output tokens generated per second) is simply the average
batch size divided by time to generate each token.

Θ =
𝐵

𝛿 × 𝜖 (15)

Due to continuous batching, the batch size is simply the
number of tokens that can be kept in GPU memory.

𝐵 ≈ GPU
𝐼𝑖 +𝑂𝑖

(16)

Simplifying the above equations, we derive the waiting
time to be:

𝑊 =
𝑂 × 𝛿 × 𝜖 × 𝐸 [𝐼𝑖 +𝑂𝑖]

𝐺𝑃𝑈
(17)

Therefore the expected waiting time would be:

𝐸 [𝑊] = 𝐸 [𝑂] × 𝛿 × 𝜖 × 𝐸 [𝐼𝑖 +𝑂𝑖]
𝐺𝑃𝑈

(18)
As each request is independent of others and all requests

originate from the same model, we assume the number of
tokens for requests in the batch and queue to be i.i.d. (inde-
pendent and identically distributed) variables.

Due to the i.i.d. condition, for a large queue, we can apply
the Central Limit Theorem and approximate the total number
of output tokens with a normal distribution.

𝑂 = N(𝑛𝜇𝑂 , 𝑛𝜎2
𝑂) (19)

𝐸 [𝑂] = 𝑛𝜇𝑂 (20)
Similarly for a large batch, we can also apply the Central

Limit Theorem to approximate the number tokens in a batch
with a normal distribution.

𝐼𝑖 +𝑂𝑖 = N(𝜇𝐼+𝑂 , 𝜎2
𝐼+𝑂/𝐵) (21)

𝐸 [𝐼𝑖 +𝑂𝑖] = 𝜇𝐼 + 𝜇𝑂 (22)
As remaining terms in the waiting time estimation are

constant, we find that the expected waiting time in the queue
can be estimated analytically.

	Abstract
	1 Introduction
	2 Background
	2.1 LLM Inference
	2.2 LLM Serving Systems
	2.3 QLM Definitions
	2.4 Motivation and Characterization

	3 QLM Design Overview
	3.1 Lifecycle of a Request in QLM
	3.2 QLM Design Principles

	4 Request Groups and Virtual Queues
	5 LLM Serving Operations
	6 Request Waiting Time (RWT) Estimator
	7 Global Scheduler
	8 Evaluation
	8.1 Single-Model Evaluation
	8.2 Multi-Model Evaluation
	8.3 QLM Robustness Analysis

	9 Discussion and Future Work
	10 Related Work
	11 Conclusion
	12 Acknowledgements
	References
	A Appendix
	A.1 Waiting Time Predictability

